Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ann Neurol ; 95(6): 1162-1172, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563317

RESUMEN

OBJECTIVE: To characterize DNA methylation (DNAm) differences between sporadic Parkinson's disease (PD) and healthy control (HC) individuals enrolled in the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using whole blood, we characterized longitudinal differences in DNAm between sporadic PD patients (n = 196) and HCs (n = 86) enrolled in PPMI. RNA sequencing (RNAseq) was used to conduct gene expression analyses for genes mapped to differentially methylated cytosine-guanine sites (CpGs). RESULTS: At the time of patient enrollment, 5,178 CpGs were differentially methylated (2,683 hypermethylated and 2,495 hypomethylated) in PD compared to HC. Of these, 579 CpGs underwent significant methylation changes over 3 years. Several differentially methylated CpGs were found near the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene. Additionally, multiple hypermethylated CpGs were associated with the N-myc downregulated gene family member 4 (NDRG4) gene. RNA-Seq analyses showed 75 differentially expressed genes in PD patients compared to controls. An integrative analysis of both differentially methylated sites and differentially expressed genes revealed 20 genes that exhibited hypomethylation concomitant with overexpression. Additionally, 1 gene, cathepsin H (CTSH), displayed hypermethylation that was associated with its decreased expression. INTERPRETATION: We provide initial evidence of alterations in DNAm in blood of PD patients that may serve as potential epigenetic biomarker of disease. To evaluate the significance of these changes throughout the progression of PD, additional profiling at longer intervals and during the prodromal stages of disease will be necessary. ANN NEUROL 2024;95:1162-1172.


Asunto(s)
Biomarcadores , Metilación de ADN , Epigénesis Genética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/sangre , Masculino , Femenino , Metilación de ADN/genética , Anciano , Persona de Mediana Edad , Biomarcadores/sangre , Epigénesis Genética/genética , Epigenoma/genética , Islas de CpG/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38642225

RESUMEN

PURPOSE OF REVIEW: In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS: We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.

4.
Can J Neurol Sci ; : 1-4, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37641969

RESUMEN

Parkinson's disease(PD) lacks a biomarker for disease progression. To analyze how cerebrospinal fluid (CSF), glucosylceramide (GlcCer), sphingomyelin (SM), or serum neurofilament light chain (NfL) associate with progression of PD in a retrospective cohort, we used linear mixed-model regressions between baseline biomarkers and change in dopamine transporter brain-imaging (DaTscan©), Montreal cognitive assesment (MoCA), or global composite outcome (GCO) score. In 191 PD patients, biomarkers were not associated with DaTscan or MoCA change over 2.1 years. Higher baseline GlcCer/SM ratio and serum-NfL nonsignificantly associated with increase in GCO score. Results do not support a role for CSF-sphingolipid/serum-NfL to predict cognitive and DaTscan progression in early-PD. Potential prediction of global clinical change warrants further study.

5.
Trials ; 23(1): 855, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203214

RESUMEN

BACKGROUND: To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline. METHODS: This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity. DISCUSSION: SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health. TRIAL REGISTRATION: ClinicalTrials.gov NCT04284436 . Registered on February 25, 2020.


Asunto(s)
Enfermedad de Parkinson , Antiparkinsonianos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Proteína C-Reactiva , Ensayos Clínicos Fase III como Asunto , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/uso terapéutico , Ejercicio Físico , Terapia por Ejercicio/métodos , Humanos , Estudios Multicéntricos como Asunto , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
6.
Mov Disord ; 37(9): 1831-1840, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921480

RESUMEN

BACKGROUND: Aging is the strongest risk factor for Parkinson's disease (PD), which is a clinically heterogeneous movement disorder with highly variable age at onset. DNA methylation age (DNAm age) is an epigenetic clock that could reflect biological aging. OBJECTIVES: The aim was to evaluate whether PD age at onset is associated with DNAm-age acceleration (difference between DNAm age and chronological age). METHODS: We used the genome-wide Infinium MethylationEPIC array to assess DNAm age in discovery (n = 96) and replication (n = 182) idiopathic PD cohorts and a unique longitudinal LRRK2 cohort (n = 220) at four time points over a 3-year period, comprising 91 manifesting and 129 nonmanifesting G2019S carriers at baseline. Cox proportional hazard regression and multivariate linear regression were used to evaluate the relation between DNAm-age acceleration and PD age at onset, which was highly variable in manifesting G2019S carriers (36-75 years) and both idiopathic PD cohorts (26-77 and 35-81 years). RESULTS: DNAm-age acceleration remained steady over the 3-year period in most G2019S carriers. It was strongly associated with age at onset in the LRRK2 cohort (P = 2.25 × 10-15 ) and discovery idiopathic PD cohort (P = 5.39 × 10-9 ), suggesting that every 5-year increase in DNAm-age acceleration is related to about a 6-year earlier onset. This link was replicated in an independent idiopathic PD cohort (P = 1.91 × 10-10 ). In each cohort, the faster-aging group has an increased hazard for an earlier onset (up to 255%). CONCLUSIONS: This study is the first to demonstrate that DNAm-age acceleration is related to PD age at onset, which could be considered in disease-modifying clinical trials. Future studies should evaluate the stability of DNAm-age acceleration over longer time periods, especially for phenoconverters from nonmanifesting to manifesting individuals. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Aceleración , Adulto , Edad de Inicio , Anciano , Epigénesis Genética , Epigenómica , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Persona de Mediana Edad , Mutación/genética , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética
7.
Acta Neuropathol ; 144(2): 167-185, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748929

RESUMEN

Lewy body disorders (LBD), characterized by the deposition of misfolded α-synuclein (α-Syn), are clinically heterogeneous. Although the distribution of α-Syn correlates with the predominant clinical features, the burden of pathology does not fully explain the observed variability in clinical presentation and rate of disease progression. We hypothesized that this heterogeneity might reflect α-Syn molecular diversity, between both patients and different brain regions. Using an ultra-sensitive assay, we evaluated α-Syn seeding in 8 brain regions from 30 LBD patients with different clinical phenotypes and disease durations. Comparing seeding across the clinical phenotypes revealed that hippocampal α-Syn from patients with a cognitive-predominant phenotype had significantly higher seeding capacity than that derived from patients with a motor-predominant phenotype, whose nigral-derived α-Syn in turn had higher seeding capacity than that from cognitive-predominant patients. Interestingly, α-Syn from patients with rapid disease progression (< 3 years to development of advanced disease) had the highest nigral seeding capacity of all the patients included. To validate these findings and explore factors underlying seeding heterogeneity, we performed in vitro toxicity assays, and detailed neuropathological and biochemical examinations. Furthermore, and for the first time, we performed a proteomic-wide profiling of the substantia nigra from 5 high seeder and 5 low seeder patients. The proteomic data suggests a significant disruption in mitochondrial function and lipid metabolism in high seeder cases compared to the low seeders. These observations suggest that distinct molecular populations of α-Syn may contribute to heterogeneity in phenotypes and progression rates in LBD and imply that effective therapeutic strategies might need to be directed at an ensemble of differently misfolded α-Syn species, with the relative contribution of their differing impacts accounting for heterogeneity in the neurodegenerative process.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Sustancia Negra , alfa-Sinucleína , Progresión de la Enfermedad , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Proteómica/métodos , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
8.
J Parkinsons Dis ; 12(s1): S29-S43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35661019

RESUMEN

There is a growing interest in the role the immune system and inflammatory response play on the pathophysiology of Parkinson's disease (PD). Epidemiological evidence lends support for the hypothesis that PD is an immune-mediated condition. An association between inflammatory bowel disease, including Crohn's and Ulcerative colitis, and the risk of PD has been described and replicated in several population-based cohorts. Other autoimmune conditions, such as Sjogren syndrome, ankylosing spondylitis, and rheumatoid arthritis also seem to be associated with an increased risk of PD. Immunosuppressant medications seem to be associated with a decreased risk of PD. Finally, variants in genes involved in immune system regulation are also shared between PD and autoimmune conditions. In this review, we will provide an overview of epidemiological evidence from population-based cohort studies, meta-analyses, and genome-wide association studies that analyze the association between the immune system and PD, discuss current gaps in the literature and future research directions in this field.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedad de Parkinson , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/genética , Estudio de Asociación del Genoma Completo , Humanos , Inmunosupresores , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética
9.
Mov Disord ; 37(5): 905-935, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481685

RESUMEN

In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos del Movimiento , Enfermedad de Parkinson , Trastornos Parkinsonianos , Distonía/genética , Trastornos Distónicos/genética , Humanos , Trastornos del Movimiento/genética , Trastornos Parkinsonianos/genética , Fenotipo
10.
Mov Disord Clin Pract ; 8(7): 997-1011, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34631935

RESUMEN

A variety of movement disorders can be associated with hypogonadism. Identification of this association may aid in guiding workup and reaching an accurate diagnosis. We conducted a comprehensive and structured search to identify the most common movement disorders associated with hypogonadism. Only Case Reports and Case Series articles were included. Ataxia was the most common movement disorder associated with hypogonadism, including entities such as Gordon-Holmes syndrome, Boucher-Neuhäuser, Marinesco-Sjögren and Perrault syndrome. Tremor was also commonly described, particularly with aneuploidies such as Klinefelter syndrome and Jacob's syndrome. Other rare conditions including mitochondrial disorders and Woodhouse-Sakati syndrome are associated with dystonia and parkinsonism and either hypo or hypergonadotropic hypogonadism. We also highlight those entities where a combination of movement disorders is present. Hypogonadism may be more commonly associated with movement disorders than previously appreciated. It is important for the clinician to be aware of this association, as well as accompanying symptoms in order to reach a precise diagnosis.

11.
Behav Sci (Basel) ; 11(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068064

RESUMEN

Cognitive impairment is a common non-motor symptom in Parkinson's Disease (PD) and an important source of patient disability and caregiver burden. The timing, profile and rate of cognitive decline varies widely among individuals with PD and can range from normal cognition to mild cognitive impairment (PD-MCI) and dementia (PDD). Beta-amyloid and tau brain accumulation, oxidative stress and neuroinflammation are reported risk factors for cognitive impairment. Traumatic brain injury and pesticide and tobacco exposure have also been described. Genetic risk factors including genes such as COMT, APOE, MAPT and BDNF may also play a role. Less is known about protective factors, although the Mediterranean diet and exercise may fall in this category. Nonetheless, there is conflicting evidence for most of the factors that have been studied. The use of inconsistent criteria and lack of comprehensive assessment in many studies are important methodological issues. Timing of exposure also plays a crucial role, although identification of the correct time window has been historically difficult in PD. Our understanding of the mechanism behind these factors, as well as the interactions between gene and environment as determinants of disease phenotype and the identification of modifiable risk factors will be paramount, as this will allow for potential interventions even in established PD.

13.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539324

RESUMEN

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Alelos , Señalización del Calcio , Dendritas/metabolismo , Trastornos Distónicos , Mutación Missense , Células de Purkinje/metabolismo , Transmisión Sináptica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Animales , Dendritas/genética , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados
14.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443317

RESUMEN

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Asunto(s)
Cerebelo/anomalías , Discapacidades del Desarrollo/genética , Distonía/genética , Complejo Mediador/genética , Malformaciones del Sistema Nervioso/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Catarata/genética , Niño , Preescolar , Epilepsia/genética , Variación Genética , Humanos , Lactante , Fenotipo , Secuenciación del Exoma
15.
J Neural Transm (Vienna) ; 128(4): 483-498, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33386558

RESUMEN

Dystonia is a clinically, genetically, and biologically heterogeneous hyperkinetic movement disorder caused by the dysfunctional activity of neural circuits involved in motor control. Our understanding of the molecular mechanisms underlying dystonia pathogenesis has tremendously grown thanks to the accelerated discovery of genes associated with monogenic dystonias (DYT-genes). Genetic discoveries, together with the development of a growing number of cellular and animal models of genetic defects responsible for dystonia, are allowing the identification of several areas of functional convergence among the protein products of multiple DYT-genes. Furthermore, unexpected functional links are being discovered in the downstream pathogenic molecular mechanisms of DYT-genes that were thought to be unrelated based on their primary molecular functions. Examples of these advances are the recognition that multiple DYT-genes are involved in (1) endoplasmic reticulum function and regulation of the integrated stress response (ISR) through Eukaryotic initiation factor 2 alpha signaling; (2) gene transcription modulation during neurodevelopment; (3) pre-and post-synaptic nigrostriatal dopaminergic signaling; and (4) presynaptic neurotransmitter vesicle release. More recently, genetic defects in the endo-lysosomal and autophagy pathways have also been implicated in the molecular pathophysiology of dystonia, suggesting the existence of mechanistic overlap with other movement disorders, such as Parkinson's disease. Importantly, the recognition that multiple DYT-genes coalesce in shared biological pathways is a crucial advance in our understanding of dystonias and will aid in the development of more effective therapeutic strategies by targeting these convergent molecular pathways.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedad de Parkinson , Animales , Distonía/genética , Trastornos Distónicos/genética , Reconocimiento en Psicología , Transmisión Sináptica
16.
CNS Drugs ; 34(10): 1025-1044, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785890

RESUMEN

Glutamatergic, noradrenergic, serotonergic, and cholinergic systems play a critical role in the basal ganglia circuitry. Targeting these non-dopaminergic receptors remains a focus of ongoing research to improve Parkinson's disease (PD) motor symptoms, without the potential side effects of dopamine replacement therapy. This review updates advancements in non-dopaminergic treatments for motor control in PD since 2013. To date, no non-dopaminergic selective drug has shown significant long-term efficacy as monotherapy in PD. The largest area of development in non-dopaminergic targets has been for motor complications of dopamine replacement therapy (motor fluctuations and dyskinesia). For treatment of motor fluctuations, safinamide, zonisamide, and istradefylline are currently approved, and novel glutamatergic and serotonergic drugs are in development. Long-acting formulations of amantadine are approved for treating dyskinesia. Several non-dopaminergic drugs have failed to show anti-dyskinetic efficacy, while some are still in development. Non-dopaminergic targets are also being pursued to treat specific motor symptoms of PD. For example, CX-8998 (a calcium channel modulator) is being evaluated for PD tremor and rivastigmine may improve gait dysfunction in PD. Drug repurposing continues to be a key strategy for non-dopaminergic targets in PD, but the field needs to increase discovery and availability of such drugs.


Asunto(s)
Antiparkinsonianos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Alanina/administración & dosificación , Alanina/efectos adversos , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/efectos adversos , Bencilaminas/administración & dosificación , Bencilaminas/efectos adversos , Bencilaminas/farmacología , Desarrollo de Medicamentos/métodos , Reposicionamiento de Medicamentos , Humanos , Enfermedad de Parkinson/fisiopatología , Purinas/administración & dosificación , Purinas/efectos adversos , Purinas/farmacología , Zonisamida/administración & dosificación , Zonisamida/efectos adversos , Zonisamida/farmacología
17.
Ann Neurol ; 88(5): 867-877, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32808683

RESUMEN

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Asunto(s)
Distonía/genética , Enfermedades por Almacenamiento Lisosomal/genética , Proteínas de Transporte Vesicular/genética , Adulto , Costo de Enfermedad , Distonía/patología , Exoma/genética , Femenino , Fibroblastos/patología , Predisposición Genética a la Enfermedad/genética , Variación Genética , Humanos , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje
18.
Curr Neurol Neurosci Rep ; 19(8): 54, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31250128

RESUMEN

PURPOSE OF REVIEW: To provide an overview of the molecular pathways and recent genetic risk loci associated with restless legs syndrome/Willis-Ekbom disease (RLS/WED) and describe the most recent treatment guidelines. RECENT FINDINGS: Diagnostic criteria for RLS/WED now include a fifth criterion to differentiate from RLS/WED mimics. Our understanding of disease pathophysiology has improved, specifically regarding iron regulation in the brain and the role of other pathways such as opioid signaling and brain and spinal cord circuitry may play. Finally, several genetic risk loci have been described, including MEIS1 which is currently considered to be the strongest genetic risk factor for RLS/WED. Treatment guidelines now suggest α2δ ligands such as gabapentin enacarbil should be used as first-line treatment. The current literature focuses on disease pathways as well as the development of animal models based on genetic risk factors for RLS/WED. Updated treatment guidelines expand on first-line treatment options.


Asunto(s)
Síndrome de las Piernas Inquietas/diagnóstico , Síndrome de las Piernas Inquietas/fisiopatología , Humanos , Síndrome de las Piernas Inquietas/tratamiento farmacológico , Síndrome de las Piernas Inquietas/genética
19.
Mov Disord ; 34(10): 1516-1527, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31216378

RESUMEN

BACKGROUND: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants have been recognized as an important cause of childhood-onset dystonia. OBJECTIVE: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged <18 years at onset, the associated clinical and radiological phenotype, and the natural history of disease. METHODS: Whole-exome sequencing or customized gene panels were used to screen a cohort of 65 patients who had previously tested negative for all other known dystonia-associated genes. RESULTS: We identified 14 patients (21.5%) carrying KMT2B variants, of which 1 was classified as a variant of unknown significance. We also identified 2 additional patients carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later caudocranial generalization. Eight patients underwent pallidal DBS with a median decrease of Burke-Fahn-Marsden Dystonia Rating Scale-Motor score of 38.5% in the long term. We also report on 4 asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete disease penetrance. CONCLUSIONS: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex neurodevelopmental syndrome, often featuring growth retardation and intellectual disability as additional phenotypic features. A dramatic and long-lasting response to DBS is characteristic of DYT-KMT2B dystonia. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Distónicos/genética , N-Metiltransferasa de Histona-Lisina/genética , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Estimulación Encefálica Profunda/métodos , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo , Adulto Joven
20.
Rev Invest Clin ; 67(4): 227-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26426588

RESUMEN

BACKGROUND: Psychosis prevalence in Parkinson's disease is estimated at 8-30%. Proton magnetic resonance spectroscopy measures specific metabolites as markers of cell functioning. OBJECTIVE: To study N-acetyl-aspartate and glutamate levels in the caudate and putamen nuclei in subjects with Parkinson's disease with and without psychosis. METHODS: We included 20 non-demented Parkinson's disease patients with psychosis and 20 Parkinson's disease patients without psychosis matched for age, sex, disease duration, and levodopa equivalent daily dose, all attended at an academic medical center. Proton magnetic resonance spectroscopy scans were performed in a 3T GE whole-body scanner. RESULTS: Decreased glutamate levels scaled to creatine were found in the dorsal caudate (p = 0.005) and putamen (p = 0.007) of the Parkinson's disease psychosis group compared with the without psychosis group. Glutamate plus glutamine levels scaled to creatine and N-acetyl-aspartate levels scaled to creatine were also significantly reduced in the dorsal caudate of the Parkinson's disease with psychosis group (p = 0.018 and p = 0.011, respectively). No group differences were found for any of the other metabolites in the two regions of interest. CONCLUSIONS: Our findings suggest that decreased metabolite levels in specific brain areas may be implicated in the development of psychosis in Parkinson's disease.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Enfermedad de Parkinson/psicología , Espectroscopía de Protones por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico , Centros Médicos Académicos , Anciano , Antiparkinsonianos/administración & dosificación , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Caudado/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos Psicóticos/etiología , Putamen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...