Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 93-100, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265874

RESUMEN

Cryo-electron microscopy (cryo-EM) has witnessed radical progress in the past decade, driven by developments in hardware and software. While current software packages include processing pipelines that simplify the image-processing workflow, they do not prioritize the in-depth analysis of crucial metadata, limiting troubleshooting for challenging data sets. The widely used RELION software package lacks a graphical native representation of the underlying metadata. Here, two web-based tools are introduced: relion_live.py, which offers real-time feedback on data collection, aiding swift decision-making during data acquisition, and relion_analyse.py, a graphical interface to represent RELION projects by plotting essential metadata including interactive data filtration and analysis. A useful script for estimating ice thickness and data quality during movie pre-processing is also presented. These tools empower researchers to analyse data efficiently and allow informed decisions during data collection and processing.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Metadatos , Microscopía por Crioelectrón , Programas Informáticos , Internet
2.
Nucleic Acids Res ; 51(2): 668-686, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629261

RESUMEN

The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.


Asunto(s)
Candida glabrata , Proteínas de Unión a Telómeros , Humanos , Candida glabrata/genética , Candida glabrata/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Unión Proteica , Complejo Shelterina , Telómero/genética , Telómero/metabolismo
3.
J Struct Biol ; 213(2): 107729, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774138

RESUMEN

Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A 'gatekeeper' complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region's structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Salmonella typhimurium , Sistemas de Secreción Tipo III/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Citoplasma/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Salmonella typhimurium/química , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Sistemas de Secreción Tipo III/metabolismo
4.
Mol Microbiol ; 115(3): 366-382, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33140482

RESUMEN

"CryoEM" has come of age, enabling considerable structural insights into many facets of molecular biology. Here, we present a primer for microbiologists to understand the capabilities and limitations of two complementary cryoEM techniques for studying bacterial secretion systems. The first, single particle analysis, determines the structures of purified protein complexes to resolutions sufficient for molecular modeling, while the second, electron cryotomography and subtomogram averaging, tends to determine more modest resolution structures of protein complexes in intact cells. We illustrate these abilities with examples of insights provided into how secretion systems work by cryoEM, with a focus on type III secretion systems.


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas de Transporte de Membrana/metabolismo , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Imagenología Tridimensional , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Biología Molecular , Conformación Proteica , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...