Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Transl Med ; 16(732): eadg8357, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295186

RESUMEN

The gut microbiome harbors trillions of organisms that contribute to human health and disease. These bacteria can also affect the properties of medical drugs used to treat these diseases, and drugs, in turn, can reshape the microbiome. Research addressing interdependent microbiome-host-drug interactions thus has broad impact. In this Review, we discuss these interactions from the perspective of drug bioavailability, absorption, metabolism, excretion, toxicity, and drug-mediated microbiome modulation. We survey approaches that aim to uncover the mechanisms underlying these effects and opportunities to translate this knowledge into new strategies to improve the development, administration, and monitoring of medical drugs.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Preparaciones Farmacéuticas , Disponibilidad Biológica , Bacterias
2.
mBio ; : e0190723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971266

RESUMEN

IMPORTANCE: Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.

3.
J Biol Chem ; 299(12): 105363, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863262

RESUMEN

Metformin is among the most prescribed medications worldwide and the first-line therapy for type 2 diabetes. However, gastrointestinal side effects are common and can be dose limiting. The total daily metformin dose frequently reaches several grams, and poor absorption results in high intestinal drug concentrations. Here, we report that metformin inhibits the activity of enteropeptidase and other digestive enzymes at drug concentrations predicted to occur in the human duodenum. Treatment of mouse gastrointestinal tissue with metformin reduces enteropeptidase activity; further, metformin-treated mice exhibit reduced enteropeptidase activity, reduced trypsin activity, and impaired protein digestion within the intestinal lumen. These results indicate that metformin-induced protein maldigestion could contribute to the gastrointestinal side effects and other impacts of this widely used drug.


Asunto(s)
Enteropeptidasa , Metformina , Proteolisis , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Enteropeptidasa/metabolismo , Metformina/efectos adversos , Metformina/farmacología , Metformina/uso terapéutico , Proteolisis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Tripsina/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
4.
Cell Host Microbe ; 31(5): 811-826.e6, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37119822

RESUMEN

Gastrointestinal infection changes microbiome composition and gene expression. In this study, we demonstrate that enteric infection also promotes rapid genetic adaptation in a gut commensal. Measurements of Bacteroides thetaiotaomicron population dynamics within gnotobiotic mice reveal that these populations are relatively stable in the absence of infection, and the introduction of the enteropathogen Citrobacter rodentium reproducibly promotes rapid selection for a single-nucleotide variant with increased fitness. This mutation promotes resistance to oxidative stress by altering the sequence of a protein, IctA, that is essential for fitness during infection. We identified commensals from multiple phyla that attenuate the selection of this variant during infection. These species increase the levels of vitamin B6 in the gut lumen. Direct administration of this vitamin is sufficient to significantly reduce variant expansion in infected mice. Our work demonstrates that a self-limited enteric infection can leave a stable mark on resident commensal populations that increase fitness during infection.


Asunto(s)
Bacteroides thetaiotaomicron , Microbiota , Animales , Ratones , Bacterias , Simbiosis
5.
Cell Host Microbe ; 31(4): 485-499, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37054671

RESUMEN

Microbial communities are shaped by positive and negative interactions ranging from competition to mutualism. In the context of the mammalian gut and its microbial inhabitants, the integrated output of the community has important impacts on host health. Cross-feeding, the sharing of metabolites between different microbes, has emergent roles in establishing communities of gut commensals that are stable, resistant to invasion, and resilient to external perturbation. In this review, we first explore the ecological and evolutionary implications of cross-feeding as a cooperative interaction. We then survey mechanisms of cross-feeding across trophic levels, from primary fermenters to H2 consumers that scavenge the final metabolic outputs of the trophic network. We extend this analysis to also include amino acid, vitamin, and cofactor cross-feeding. Throughout, we highlight evidence for the impact of these interactions on each species' fitness as well as host health. Understanding cross-feeding illuminates an important aspect of microbe-microbe and host-microbe interactions that establishes and shapes our gut communities.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Simbiosis , Evolución Biológica , Interacciones Microbiota-Huesped , Mamíferos
6.
Science ; 379(6637): 1149-1156, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927025

RESUMEN

Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut. We establish that the intrinsically disordered region (IDR) of the broadly and highly conserved transcription termination factor Rho is necessary and sufficient for phase separation in vivo and in vitro in the human commensal Bacteroides thetaiotaomicron. Phase separation increases transcription termination by Rho in an IDR-dependent manner. Moreover, the IDR is critical for gene regulation in the gut. Our findings expose phase separation as vital for host-commensal bacteria interactions and relevant for novel clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Aptitud Genética , Proteínas Intrínsecamente Desordenadas , ARN Helicasas , Factor Rho , Animales , Humanos , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/fisiología , Factor Rho/química , Factor Rho/genética , Factor Rho/fisiología , Terminación de la Transcripción Genética , Dominios Proteicos , Ratones , Vida Libre de Gérmenes , Ratones Endogámicos C57BL , Masculino , Femenino
7.
EMBO J ; 42(2): e112372, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36472247

RESUMEN

Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.


Asunto(s)
Bacteroides , Factor G de Elongación Peptídica , Animales , Ratones , Bacteroides/genética , Bacteroides/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/química , Ribosomas/metabolismo , ARN de Transferencia/metabolismo
8.
J Natl Cancer Inst ; 114(5): 651-663, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34850062

RESUMEN

Microbes play important roles in cancer from direct carcinogenic effects to their use in treatment. Cancers caused by microorganisms account for approximately 15% of cancers, primarily in low- and middle-income countries. Unique features of infectious carcinogens include their transmissibility, mutability, and specific immune interactions, which provide challenges and opportunities for cancer prevention and treatment. For these agents, infection control through exposure reduction, antivirals, antibiotics, and vaccines is cancer control. In addition, developing evidence suggests that microorganisms including the human microbiome can indirectly modulate cancer formation and influence the effectiveness and toxicity of cancer treatments. Finally, microorganisms themselves can be used to prevent or treat cancer. The convergence of these factors signals the emergence of a new field, cancer microbiology. Recognition of cancer microbiology will spur research, stimulate cross-disciplinary training, inform drug development, and improve public health.


Asunto(s)
Microbiota , Neoplasias , Antibacterianos , Carcinógenos , Atención a la Salud , Humanos , Neoplasias/prevención & control
9.
mBio ; 12(4): e0065621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465018

RESUMEN

Human gut microbes exhibit a spectrum of cooperative and antagonistic interactions with their host and also with other microbes. The major Bacteroides host-targeting virulence factor, Bacteroides fragilis toxin (BFT), is produced as an inactive protoxin by enterotoxigenic B. fragilis strains. BFT is processed by the conserved bacterial cysteine protease fragipain (Fpn), which is also encoded in B. fragilis strains that lack BFT. In this report, we identify a secreted antibacterial protein (fragipain-activated bacteriocin 1 [Fab1]) and its cognate immunity protein (resistance to fragipain-activated bacteriocin 1 [RFab1]) in enterotoxigenic and nontoxigenic strains of B. fragilis. Although BFT and Fab1 share no sequence identity, Fpn also activates the Fab1 protoxin, resulting in its secretion and antibacterial activity. These findings highlight commonalities between host- and bacterium-targeting toxins in intestinal bacteria and suggest that antibacterial antagonism may promote the conservation of pathways that activate host-targeting virulence factors. IMPORTANCE The human intestine harbors a highly complex microbial community; interpersonal variation in this community can impact pathogen susceptibility, metabolism, and other aspects of health. Here, we identified and characterized a commensal-targeting antibacterial protein encoded in the gut microbiome. Notably, a shared pathway activates this antibacterial toxin and a host-targeting toxin. These findings highlight unexpected commonalities between host- and bacterium-targeting toxins in intestinal bacteria.


Asunto(s)
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Microbioma Gastrointestinal/genética , Interacciones Microbiota-Huesped , Intestinos/microbiología , Redes y Vías Metabólicas/genética , Animales , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Bacteriocinas/genética , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Femenino , Humanos , Masculino , Metaloendopeptidasas/metabolismo , Ratones Endogámicos C57BL
10.
Hepatol Commun ; 5(9): 1507-1517, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34510838

RESUMEN

The intestinal microbiome and bacterial translocation (BT), the passage of microorganisms from the gut lumen to mesenteric lymph nodes and other extra-intestinal sites, are main mechanisms implicated in liver injury and further decompensation in patients with cirrhosis. We hypothesized that obeticholic acid (OCA), a semisynthetic bile acid, would change the microbiome composition and reduce bacterial translocation in experimental cirrhosis. Rats with cirrhosis induced by carbon tetrachloride inhalation (a nonseptic model) with ascites present for at least 7 days were randomized to receive a 14-day course of OCA at a dose of 5 mg/kg/day (n = 34) or placebo (n = 34). Stool was collected at days 1 (randomization), 8, and 14 (sacrifice) for analysis of intestinal microbiome using the V4 hypervariable region of the bacterial 16S gene amplified by polymerase chain reaction. Bacteriological cultures of mesenteric lymph nodes, blood, and ascites were performed at end of study. Twenty-four animals in each group reached the end of study. Compared with placebo, rats treated with OCA had decreased relative abundance of Enterococcus in both ileum content (P = 0.02) and in stool (P < 0.001). BT from pathogenic bacteria was not different between groups. At end of treatment, rats on OCA had a significantly lower aspartate aminotransferase (AST) (266 vs. 369 IU/L; P < 0.01) and higher serum albumin (0.9 vs. 0.7 g/dL; P < 0.01) than rats on placebo. Conclusion: Although OCA did not appear to reduce BT by pathogenic bacteria, the reduction in intestinal content of Enterococcus, which has been associated with hepatocyte death, in OCA-treated animals is consistent with our observed improvements in AST and in liver function, as evidenced by higher serum albumin.

11.
Nat Rev Genet ; 21(9): 526-540, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32533119

RESUMEN

It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications.


Asunto(s)
Elementos Transponibles de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Animales , Humanos
12.
Nat Commun ; 11(1): 2471, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424203

RESUMEN

Gut microbes are linked to host metabolism, but specific mechanisms remain to be uncovered. Ceramides, a type of sphingolipid (SL), have been implicated in the development of a range of metabolic disorders from insulin resistance (IR) to hepatic steatosis. SLs are obtained from the diet and generated by de novo synthesis in mammalian tissues. Another potential, but unexplored, source of mammalian SLs is production by Bacteroidetes, the dominant phylum of the gut microbiome. Genomes of Bacteroides spp. and their relatives encode serine palmitoyltransfease (SPT), allowing them to produce SLs. Here, we explore the contribution of SL-production by gut Bacteroides to host SL homeostasis. In human cell culture, bacterial SLs are processed by host SL-metabolic pathways. In mouse models, Bacteroides-derived lipids transfer to host epithelial tissue and the hepatic portal vein. Administration of B. thetaiotaomicron to mice, but not an SPT-deficient strain, reduces de novo SL production and increases liver ceramides. These results indicate that gut-derived bacterial SLs affect host lipid metabolism.


Asunto(s)
Bacteroides/fisiología , Ceramidas/metabolismo , Microbioma Gastrointestinal , Redes y Vías Metabólicas , Esfingolípidos/metabolismo , Animales , Células CACO-2 , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Vida Libre de Gérmenes , Humanos , Resistencia a la Insulina , Mucosa Intestinal/microbiología , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Mutación/genética , Serina C-Palmitoiltransferasa/deficiencia , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo
14.
mBio ; 11(1)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992627

RESUMEN

Microbial colonization of the mammalian gut is largely ascribed to the ability to utilize nutrients available in that environment. To understand how beneficial microbes establish a relationship with their hosts, it is crucial to determine what other abilities promote gut colonization. We now report that colonization of the murine gut by the beneficial microbe Bacteroides thetaiotaomicron requires activation of a putative translation factor by the major transcriptional regulator of gut colonization and carbohydrate utilization. To ascertain how this regulator-called BT4338-promotes gut colonization, we identified BT4338-regulated genes and BT4338-bound DNA sequences. Unexpectedly, the gene whose expression was most reduced upon BT4338 inactivation was fusA2, specifying a putative translation factor. We determined that fusA2 activation by BT4338 is conserved in another Bacteroides species and essential for gut colonization in B. thetaiotaomicron because a mutant lacking the BT4338 binding site in the fusA2 promoter exhibited a colonization defect similar to that of a mutant lacking the fusA2 gene. Furthermore, we demonstrated that BT4338 promotes gut colonization independently of its role in carbohydrate utilization because the fusA2 gene was dispensable for utilization of carbohydrates that depend on BT4338 Our findings suggest that microbial gut colonization requires the use of alternative protein synthesis factors.IMPORTANCE The bacteria occupying the mammalian gut have evolved unique strategies to thrive in their environment. Bacteroides organisms, which often comprise 25 to 50% of the human gut microbiota, derive nutrients from structurally diverse complex polysaccharides, commonly called dietary fibers. This ability requires an expansive genetic repertoire that is coordinately regulated to achieve expression of those genes dedicated to utilizing only those dietary fibers present in the environment. Here we identify the global regulon of a transcriptional regulator necessary for dietary fiber utilization and gut colonization. We demonstrate that this transcription factor regulates hundreds of genes putatively involved in dietary fiber utilization as well as a putative translation factor dispensable for growth on such nutrients but necessary for survival in the gut. These findings suggest that gut bacteria coordinate cellular metabolism with protein synthesis via specialized translation factors to promote survival in the mammalian gut.

16.
J Bacteriol ; 202(3)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712278

RESUMEN

Bacteroides is one of the most prominent genera in the human gut microbiome, and study of this bacterial group provides insights into gut microbial ecology and pathogenesis. In this report, we introduce a negative selection system for rapid and efficient allelic exchange in wild Bacteroides species that does not require any alterations to the genetic background or a nutritionally defined culture medium. In this approach, dual antibacterial effectors normally delivered via type VI secretion are targeted to the bacterial periplasm under the control of tightly regulated anhydrotetracycline (aTC)-inducible promoters. Introduction of aTC selects for recombination events producing the desired genetic modification, and the dual effector design allows for broad applicability across strains that may have immunity to one counterselection effector. We demonstrate the utility of this approach across 21 human gut Bacteroides isolates representing diverse species, including strains isolated directly from human donors. We use this system to establish that antimicrobial peptide resistance in Bacteroides vulgatus is determined by the product of a gene that is not included in the genomes of previously genetically tractable members of the human gut microbiome.IMPORTANCE Human gut Bacteroides species exhibit strain-level differences in their physiology, ecology, and impact on human health and disease. However, existing approaches for genetic manipulation generally require construction of genetically modified parental strains for each microbe of interest or defined medium formulations. In this report, we introduce a robust and efficient strategy for targeted genetic manipulation of diverse wild-type Bacteroides species from the human gut. This system enables genetic investigation of members of human and animal microbiomes beyond existing model organisms.


Asunto(s)
Bacteroides/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/efectos de los fármacos , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/genética , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Humanos , Microbiota/efectos de los fármacos , Microbiota/genética , Polimixina B/farmacología
17.
Gut Microbes ; 11(3): 587-596, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564204

RESUMEN

Increasing evidence suggests a role of the gut microbiota in patients' response to medicinal drugs. In our recent study, we combined genomics of human gut commensals and gnotobiotic animal experiments to quantify microbiota and host contributions to drug metabolism. Informed by experimental data, we built a physiology-based pharmacokinetic model of drug metabolism that includes intestinal compartments with microbiome drug-metabolizing activity. This model successfully predicted serum levels of metabolites of three different drugs, quantified microbial contribution to systemic drug metabolite exposure, and simulated the effect of different parameters on host and microbiota drug metabolism. In this addendum, we expand these simulations to assess the effect of microbiota on the systemic drug and metabolite levels under conditions of altered host physiology, microbiota drug-metabolizing activity or physico-chemical properties of drugs. This work illustrates how and under which circumstances the gut microbiome may influence drug pharmacokinetics, and discusses broader implications of expanded pharmacokinetic models.


Asunto(s)
Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Animales , Circulación Enterohepática , Tracto Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Humanos , Absorción Intestinal , Ratones , Modelos Animales
18.
Nature ; 570(7762): 462-467, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31158845

RESUMEN

Individuals vary widely in their responses to medicinal drugs, which can be dangerous and expensive owing to treatment delays and adverse effects. Although increasing evidence implicates the gut microbiome in this variability, the molecular mechanisms involved remain largely unknown. Here we show, by measuring the ability of 76 human gut bacteria from diverse clades to metabolize 271 orally administered drugs, that many drugs are chemically modified by microorganisms. We combined high-throughput genetic analyses with mass spectrometry to systematically identify microbial gene products that metabolize drugs. These microbiome-encoded enzymes can directly and substantially affect intestinal and systemic drug metabolism in mice, and can explain the drug-metabolizing activities of human gut bacteria and communities on the basis of their genomic contents. These causal links between the gene content and metabolic activities of the microbiota connect interpersonal variability in microbiomes to interpersonal differences in drug metabolism, which has implications for medical therapy and drug development across multiple disease indications.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Microbioma Gastrointestinal/genética , Preparaciones Farmacéuticas/metabolismo , Animales , Bacterias/clasificación , Bacterias/enzimología , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Diltiazem/metabolismo , Femenino , Microbioma Gastrointestinal/fisiología , Genoma Bacteriano/genética , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Preparaciones Farmacéuticas/administración & dosificación , Especificidad por Sustrato
19.
Cell Host Microbe ; 26(1): 100-113.e8, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31227334

RESUMEN

Given the immense antigenic load present in the microbiome, we hypothesized that microbiota mimotopes can be a persistent trigger in human autoimmunity via cross-reactivity. Using antiphospholipid syndrome (APS) as a model, we demonstrate cross-reactivity between non-orthologous mimotopes expressed by a common human gut commensal, Roseburia intestinalis (R. int), and T and B cell autoepitopes in the APS autoantigen ß2-glycoprotein I (ß2GPI). Autoantigen-reactive CD4+ memory T cell clones and an APS-derived, pathogenic monoclonal antibody cross-reacted with R. int mimotopes. Core-sequence-dependent anti-R. int mimotope IgG titers were significantly elevated in APS patients and correlated with anti-ß2GPI IgG autoantibodies. R. int immunization of mice induced ß2GPI-specific lymphocytes and autoantibodies. Oral gavage of susceptible mice with R. int induced anti-human ß2GPI autoantibodies and autoimmune pathologies. Together, these data support a role for non-orthologous commensal-host cross-reactivity in the development and persistence of autoimmunity in APS, which may apply more broadly to human autoimmune disease.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Clostridiales/inmunología , Reacciones Cruzadas , Linfocitos T/inmunología , Adulto , Anciano , Animales , Síndrome Antifosfolípido/patología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Inmunoglobulina G/sangre , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales , Adulto Joven , beta 2 Glicoproteína I/inmunología
20.
mBio ; 10(2)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862751

RESUMEN

A diverse, antibiotic-naive microbiota prevents highly antibiotic-resistant microbes, including carbapenem-resistant Klebsiella pneumoniae (CR-Kp), from achieving dense colonization of the intestinal lumen. Antibiotic-mediated destruction of the microbiota leads to expansion of CR-Kp in the gut, markedly increasing the risk of bacteremia in vulnerable patients. While preventing dense colonization represents a rational approach to reduce intra- and interpatient dissemination of CR-Kp, little is known about pathogen-associated factors that enable dense growth and persistence in the intestinal lumen. To identify genetic factors essential for dense colonization of the gut by CR-Kp, we constructed a highly saturated transposon mutant library with >150,000 unique mutations in an ST258 strain of CR-Kp and screened for in vitro growth and in vivo intestinal colonization in antibiotic-treated mice. Stochastic and partially reversible fluctuations in the representation of different mutations during dense colonization revealed the dynamic nature of intestinal microbial populations. We identified genes that are crucial for early and late stages of dense gut colonization and confirmed their role by testing isogenic mutants in in vivo competition assays with wild-type CR-Kp Screening of the transposon library also identified mutations that enhanced in vivo CR-Kp growth. These newly identified colonization factors may provide novel therapeutic opportunities to reduce intestinal colonization by CR-KpIMPORTANCEKlebsiella pneumoniae is a common cause of bloodstream infections in immunocompromised and hospitalized patients, and over the last 2 decades, some strains have acquired resistance to nearly all available antibiotics, including broad-spectrum carbapenems. The U.S. Centers for Disease Control and Prevention has listed carbapenem-resistant K. pneumoniae (CR-Kp) as an urgent public health threat. Dense colonization of the intestine by CR-Kp and other antibiotic-resistant bacteria is associated with an increased risk of bacteremia. Reducing the density of gut colonization by CR-Kp is likely to reduce their transmission from patient to patient in health care facilities as well as systemic infections. How CR-Kp expands and persists in the gut lumen, however, is poorly understood. Herein, we generated a highly saturated mutant library in a multidrug-resistant K. pneumoniae strain and identified genetic factors that are associated with dense gut colonization by K. pneumoniae This study sheds light on host colonization by K. pneumoniae and identifies potential colonization factors that contribute to high-density persistence of K. pneumoniae in the intestine.


Asunto(s)
Antibacterianos/administración & dosificación , Carbapenémicos/administración & dosificación , Genoma Bacteriano , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/crecimiento & desarrollo , Factores de Virulencia/genética , Resistencia betalactámica , Animales , Antibacterianos/farmacología , Carbapenémicos/farmacología , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Pruebas Genéticas , Klebsiella pneumoniae/genética , Ratones , Mutagénesis Insercional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...