Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 396(1): 112247, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882217

RESUMEN

A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.


Asunto(s)
Gametogénesis/genética , Meiosis , Oocitos/metabolismo , Saccharomyces cerevisiae/genética , Espermatozoides/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Lisosomas/metabolismo , Masculino , Oocitos/citología , Oocitos/crecimiento & desarrollo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo
2.
Elife ; 82019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31397671

RESUMEN

Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.


Asunto(s)
Factores Biológicos/metabolismo , Sustancias Macromoleculares/metabolismo , Meiosis , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/metabolismo , Microscopía Fluorescente , Saccharomycetales/citología , Imagen de Lapso de Tiempo
3.
Nucleic Acids Res ; 45(2): 643-656, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123037

RESUMEN

Histone chaperones are proteins that interact with histones to regulate the thermodynamic process of nucleosome assembly. sNASP and ASF1 are conserved histone chaperones that interact with histones H3 and H4 and are found in a multi-chaperoning complex in vivo Previously we identified a short peptide motif within H3 that binds to the TPR domain of sNASP with nanomolar affinity. Interestingly, this peptide motif is sequestered within the known ASF1-H3-H4 interface, raising the question of how these two proteins are found in complex together with histones when they share the same binding site. Here, we show that sNASP contains at least two additional histone interaction sites that, unlike the TPR-H3 peptide interaction, are compatible with ASF1A binding. These surfaces allow ASF1A to form a quaternary complex with both sNASP and H3-H4. Furthermore, we demonstrate that sNASP makes a specific complex with H3 on its own in vitro, but not with H4, suggesting that it could work upstream of ASF1A. Further, we show that sNASP and ASF1A are capable of folding an H3-H4 dimer in vitro under native conditions. These findings reveal a network of binding events that may promote the entry of histones H3 and H4 into the nucleosome assembly pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas de Ciclo Celular/química , Chaperonas de Histonas/química , Histonas/química , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...