Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Accid Anal Prev ; 202: 107560, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677239

RESUMEN

As the level of vehicle automation increases, drivers are more likely to engage in non-driving related tasks which take their hands, eyes, and/or mind away from the driving task. Consequently, there has been increased interest in creating Driver Monitoring Systems (DMS) that are valid and reliable for detecting elements of driver state. Workload is one element of driver state that has remained elusive within the literature. Whilst there has been promising work in estimating mental workload using gaze-based metrics, the literature has placed too much emphasis on point estimate differences. Whilst these are useful for establishing whether effects exist, they ignore the inherent variability within individuals and between different drivers. The current work builds on this by using a Bayesian distributional modelling approach to quantify the within and between participants variability in Information Theoretical gaze metrics. Drivers (N = 38) undertook two experimental drives in hands-off Level 2 automation with their hands and feet away from operational controls. During both drives, their priority was to monitor the road before a critical takeover. During one drive participants had to complete a secondary cognitive task (2-back) during the hands-off Level 2 automation. Changes in Stationary Gaze Entropy and Gaze Transition Entropy were assessed for conditions with and without the 2-back to investigate whether consistent differences between workload conditions could be found across the sample. Stationary Gaze Entropy proved a reliable indicator of mental workload; 92 % of the population were predicted to show a decrease when completing 2-back during hands-off Level 2 automated driving. Conversely, Gaze Transition Entropy showed substantial heterogeneity; only 66 % of the population were predicted to have similar decreases. Furthermore, age was a strong predictor of the heterogeneity of the average causal effect that high mental workload had on eye movements. These results indicate that, whilst certain elements of Information Theoretic metrics can be used to estimate mental workload by DMS, future research needs to focus on the heterogeneity of these processes. Understanding this heterogeneity has important implications toward the design of future DMS and thus the safety of drivers using automated vehicle functions. It must be ensured that metrics used to detect mental workload are valid (accurately detecting a particular driver state) as well as reliable (consistently detecting this driver state across a population).


Asunto(s)
Automatización , Teorema de Bayes , Carga de Trabajo , Humanos , Masculino , Carga de Trabajo/psicología , Femenino , Adulto , Adulto Joven , Fijación Ocular , Tecnología de Seguimiento Ocular , Persona de Mediana Edad , Conducción de Automóvil/psicología , Entropía , Movimientos Oculares , Conducción Distraída
2.
J Exp Psychol Hum Percept Perform ; 49(6): 821-834, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276122

RESUMEN

To steer a vehicle, humans must process incoming signals that provide information about their movement through the world. These signals are used to inform motor control responses that are appropriately timed and of the correct magnitude. However, the perceptual mechanisms determining how drivers process visual information remain unclear. Previous research has demonstrated that when steering toward a straight road-line, drivers accumulate perceptual evidence (error) over time to initiate steering action (Accumulator framework), rather than waiting for perceptual evidence to surpass time-independent fixed thresholds (Threshold framework). The more general case of steering around bends (with a requirement that the trajectory is adjusted to match the road curvature ahead) provides richer continuously varying information. The current experiment aims to establish whether the Accumulator framework provides a good description of human responses when steering toward curved road-lines. Using a computer-generated steering correction paradigm, drivers (N = 11) steered toward intermittently appearing curved road-lines that varied in position and radius with respect to the driver's trajectory. The Threshold framework predicted that steering responses would be of fixed magnitude and at fixed absolute errors across conditions regardless of the rate of error development. Conversely, the Accumulator framework predicted that drivers should respond to larger absolute errors when the error signal developed at a faster rate. Results were consistent with an Accumulator framework in a manner that supports previous investigations and the computational modeling literature. We propose that the accumulation of perceptual evidence captures human behavior in a variety of steering contexts that drivers face in the real world. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Conducción de Automóvil , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Movimiento , Simulación por Computador
3.
Psychon Bull Rev ; 30(4): 1422-1430, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36650364

RESUMEN

Both symbolic (digits) and non-symbolic (dots) numerals are spatially coded, with relatively small numbers being responded faster with a left key and large numbers being responded faster with a right key (spatial-numerical association of response codes [SNARC]). The idea of format independent SNARC seems to support the existence of a common system for symbolic and non-symbolic numerical representations, although evidence in the field is still mixed. The aim of the present study is to investigate whether symbolic and non-symbolic numerals interact in the SNARC effect when both information is simultaneously displayed. To do so, participants were presented with dice-like patterns, with digits being used instead of dots. In two separate magnitude classification tasks, participants had to respond either to the number of digits presented on the screen or to their numerical size. In the non-symbolic task, they had to judge whether the digits on the screen were more or less than three, irrespective of the numerical value of the digits. In the symbolic task, participants had to judge whether the digits on the screen were numerically smaller or larger than three, irrespective of the number of digits being present. The results show a consistent SNARC effect in the symbolic task and no effect in the non-symbolic one. Furthermore, congruency between symbolic and non-symbolic numerals did not modulate the response patterns, thus supporting the idea of independent representations and questioning some propositions of current theoretical accounts.


Asunto(s)
Percepción Espacial , Humanos , Percepción Espacial/fisiología , Tiempo de Reacción/fisiología
4.
J Exp Psychol Hum Percept Perform ; 48(1): 64-76, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35073144

RESUMEN

Vehicle control by humans is possible because the central nervous system is capable of using visual information to produce complex sensorimotor actions. Drivers must monitor errors and initiate steering corrections of appropriate magnitude and timing to maintain a safe lane position. The perceptual mechanisms determining how a driver processes visual information and initiates steering corrections remain unclear. Previous research suggests 2 potential alternative mechanisms for responding to errors: (a) perceptual evidence (error) satisficing fixed constant thresholds (Threshold), or (b) the integration of perceptual evidence over time (Accumulator). To distinguish between these mechanisms, an experiment was conducted using a computer-generated steering correction paradigm. Drivers (N = 20) steered toward an intermittently appearing "road-line" that varied in position and orientation with respect to the driver's position and trajectory. One key prediction from a Threshold framework is a fixed absolute error response across conditions regardless of the rate of error development, whereas the Accumulator framework predicts that drivers would respond to larger absolute errors when the error signal develops at a faster rate. Results were consistent with an Accumulator framework; thus we propose that models of steering should integrate perceived control error over time in order to accurately capture human perceptual performance. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Asunto(s)
Conducción de Automóvil , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...