Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
PLoS One ; 19(3): e0299284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427616

RESUMEN

Brain imaging with a high-spatiotemporal resolution is crucial for accurate brain-function mapping. Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are two popular neuroimaging modalities with complementary features that record brain function with high temporal and spatial resolution, respectively. One popular non-invasive way to obtain data with both high spatial and temporal resolutions is to combine the fMRI activation map and EEG data to improve the spatial resolution of the EEG source localization. However, using the whole fMRI map may cause spurious results for the EEG source localization, especially for deep brain regions. Considering the head's conductivity, deep regions' sources with low activity are unlikely to be detected by the EEG electrodes at the scalp. In this study, we use fMRI's high spatial-frequency component to identify the local high-intensity activations that are most likely to be captured by the EEG. The 3D Empirical Mode Decomposition (3D-EMD), a data-driven method, is used to decompose the fMRI map into its spatial-frequency components. Different validation measurements for EEG source localization show improved performance for the EEG inverse-modeling informed by the fMRI's high-frequency spatial component compared to the fMRI-informed EEG source-localization methods. The level of improvement varies depending on the voxels' intensity and their distribution. Our experimental results also support this conclusion.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Electroencefalografía
2.
J Neurotrauma ; 41(5-6): 587-603, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37489293

RESUMEN

Advanced magnetic resonance imaging (MRI) techniques indicate that concussion (i.e., mild traumatic brain injury) disrupts brain structure and function in children. However, the functional connectivity of brain regions within global and local networks (i.e., functional connectome) is poorly understood in pediatric concussion. This prospective, longitudinal study addressed this gap using data from the largest neuroimaging study of pediatric concussion to date to study the functional connectome longitudinally after concussion as compared with mild orthopedic injury (OI). Children and adolescents (n = 967) 8-16.99 years with concussion or mild OI were recruited from pediatric emergency departments within 48 h post-injury. Pre-injury and 1-month post-injury symptom ratings were used to classify concussion with or without persistent symptoms based on reliable change. Subjects completed a post-acute (2-33 days) and chronic (3 or 6 months via random assignment) MRI scan. Graph theory metrics were derived from 918 resting-state functional MRI scans in 585 children (386 concussion/199 OI). Linear mixed-effects modeling was performed to assess group differences over time, correcting for multiple comparisons. Relative to OI, the global clustering coefficient was reduced at 3 months post-injury in older children with concussion and in females with concussion and persistent symptoms. Time post-injury and sex moderated group differences in local (regional) network metrics of several brain regions, including degree centrality, efficiency, and clustering coefficient of the angular gyrus, calcarine fissure, cuneus, and inferior occipital, lingual, middle occipital, post-central, and superior occipital gyrus. Relative to OI, degree centrality and nodal efficiency were reduced post-acutely, and nodal efficiency and clustering coefficient were reduced chronically after concussion (i.e., at 3 and 6 months post-injury in females; at 6 months post-injury in males). Functional network alterations were more robust and widespread chronically as opposed to post-acutely after concussion, and varied by sex, age, and symptom recovery at 1-month post-injury. Local network segregation reductions emerged globally (across the whole brain network) in older children and in females with poor recovery chronically after concussion. Reduced functioning between neighboring regions could negatively disrupt specialized information processing. Local network metric alterations were demonstrated in several posterior regions that are involved in vision and attention after concussion relative to OI. This indicates that functioning of superior parietal and occipital regions could be particularly susceptibile to the effects of concussion. Moreover, those regional alterations were especially apparent at later time periods post-injury, emerging after post-concussive symptoms resolved in most and persisted up to 6 months post-injury, and differed by biological sex. This indicates that neurobiological changes continue to occur up to 6 months after pediatric concussion, although changes emerge earlier in females than in males. Changes could reflect neural compensation mechanisms.


Asunto(s)
Conmoción Encefálica , Conectoma , Adolescente , Niño , Femenino , Humanos , Masculino , Encéfalo/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Estudios Longitudinales , Estudios Prospectivos
3.
Hum Brain Mapp ; 45(1): e26541, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38053448

RESUMEN

Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Propiocepción/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Hipoestesia , Imagen por Resonancia Magnética
4.
Neurophotonics ; 10(3): 035005, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37409179

RESUMEN

Significance: Functional near-infrared spectroscopy (fNIRS), with its measure of delta hemoglobin concentration, has shown promise as a monitoring tool for the functional assessment of neurological disorders and brain injury. Analysis of fNIRS data often involves averaging data from several channel pairs in a region. Although this greatly reduces the processing time, it is uncertain how it affects the ability to detect changes post injury. Aim: We aimed to determine how averaging data within regions impacts the ability to differentiate between post-concussion and healthy controls. Approach: We compared interhemispheric coherence data from 16 channel pairs across the left and right dorsolateral prefrontal cortex during a task and a rest period. We compared the statistical power for differentiating groups that was obtained when undertaking no averaging, vs. averaging data from 2, 4, or 8 source detector pairs. Results: Coherence was significantly reduced in the concussion group compared with controls when no averaging was undertaken. Averaging all 8 channel pairs before undertaking the coherence analysis resulted in no group differences. Conclusions: Averaging between fiber pairs may eliminate the ability to detect group differences. It is proposed that even adjacent fiber pairs may have unique information, so averaging must be done with caution when monitoring brain disorders or injury.

5.
Pediatrics ; 152(2)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37455662

RESUMEN

OBJECTIVES: This study investigated IQ scores in pediatric concussion (ie, mild traumatic brain injury) versus orthopedic injury. METHODS: Children (N = 866; aged 8-16.99 years) were recruited for 2 prospective cohort studies from emergency departments at children's hospitals (2 sites in the United States and 5 in Canada) ≤48 hours after sustaining a concussion or orthopedic injury. They completed IQ and performance validity testing postacutely (3-18 days postinjury; United States) or 3 months postinjury (Canada). Group differences in IQ scores were examined using 3 complementary statistical approaches (linear modeling, Bayesian, and multigroup factor analysis) in children performing above cutoffs on validity testing. RESULTS: Linear models showed small group differences in full-scale IQ (d [95% confidence interval] = 0.13 [0.00-0.26]) and matrix reasoning (0.16 [0.03-0.30]), but not in vocabulary scores. IQ scores were not related to previous concussion, acute clinical features, injury mechanism, a validated clinical risk score, pre- or postinjury symptom ratings, litigation, or symptomatic status at 1 month postinjury. Bayesian models provided moderate to very strong evidence against group differences in IQ scores (Bayes factor 0.02-0.23). Multigroup factor analysis further demonstrated strict measurement invariance, indicating group equivalence in factor structure of the IQ test and latent variable means. CONCLUSIONS: Across multisite, prospective study cohorts, 3 complementary statistical models provided no evidence of clinically meaningful differences in IQ scores after pediatric concussion. Instead, overall results provided strong evidence against reduced intelligence in the first few weeks to months after pediatric concussion.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Humanos , Niño , Conmoción Encefálica/diagnóstico , Conmoción Encefálica/epidemiología , Estudios Prospectivos , Teorema de Bayes , Factores de Riesgo , Canadá
6.
Brain Commun ; 5(3): fcad173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324241

RESUMEN

Advanced diffusion-weighted imaging techniques have increased understanding of the neuropathology of paediatric mild traumatic brain injury (i.e. concussion). Most studies have examined discrete white-matter pathways, which may not capture the characteristically subtle, diffuse and heterogenous effects of paediatric concussion on brain microstructure. This study compared the structural connectome of children with concussion to those with mild orthopaedic injury to determine whether network metrics and their trajectories across time post-injury differentiate paediatric concussion from mild traumatic injury more generally. Data were drawn from of a large study of outcomes in paediatric concussion. Children aged 8-16.99 years were recruited from five paediatric emergency departments within 48 h of sustaining a concussion (n = 360; 56% male) or mild orthopaedic injury (n = 196; 62% male). A reliable change score was used to classify children with concussion into two groups: concussion with or without persistent symptoms. Children completed 3 T MRI at post-acute (2-33 days) and/or chronic (3 or 6 months, via random assignment) post-injury follow-ups. Diffusion-weighted images were used to calculate the diffusion tensor, conduct deterministic whole-brain fibre tractography and compute connectivity matrices in native (diffusion) space for 90 supratentorial regions. Weighted adjacency matrices were constructed using average fractional anisotropy and used to calculate global and local (regional) graph theory metrics. Linear mixed effects modelling was performed to compare groups, correcting for multiple comparisons. Groups did not differ in global network metrics. However, the clustering coefficient, betweenness centrality and efficiency of the insula, cingulate, parietal, occipital and subcortical regions differed among groups, with differences moderated by time (days) post-injury, biological sex and age at time of injury. Post-acute differences were minimal, whereas more robust alterations emerged at 3 and especially 6 months in children with concussion with persistent symptoms, albeit differently by sex and age. In the largest neuroimaging study to date, post-acute regional network metrics distinguished concussion from mild orthopaedic injury and predicted symptom recovery 1-month post-injury. Regional network parameters alterations were more robust and widespread at chronic timepoints than post-acutely after concussion. Results suggest that increased regional and local subnetwork segregation (modularity) and inefficiency occurs across time after concussion, emerging after post-concussive symptom resolve in most children. These differences persist up to 6 months after concussion, especially in children who showed persistent symptoms. While prognostic, the small to modest effect size of group differences and the moderating effects of sex likely would preclude effective clinical application in individual patients.

7.
Neurology ; 101(7): e728-e739, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37353339

RESUMEN

BACKGROUND AND OBJECTIVES: This prospective, longitudinal cohort study examined trajectories of brain gray matter macrostructure after pediatric mild traumatic brain injury (mTBI). METHODS: Children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) were recruited from 5 pediatric emergency departments. Reliable change between preinjury and 1 month postinjury symptom ratings was used to classify mTBI with or without persistent symptoms. Children completed postacute (2-33 days) and/or chronic (3 or 6 months) postinjury T1-weighted MRI, from which macrostructural metrics were derived using automated segmentation. Linear mixed-effects models were used, with multiple comparisons correction. RESULTS: Groups (N = 623; 407 mTBI/216 OI; 59% male; age mean = 12.03, SD = 2.38 years) did not differ in total brain, white, or gray matter volumes or regional subcortical gray matter volumes. However, time postinjury, age at injury, and biological sex-moderated differences among symptom groups in cortical thickness of the angular gyrus, basal forebrain, calcarine cortex, gyrus rectus, medial and posterior orbital gyrus, and the subcallosal area all corrected p < 0.05. Gray matter macrostructural metrics did not differ between groups postacutely. However, cortical thinning emerged chronically after mTBI relative to OI in the angular gyrus in older children (d [95% confidence interval] = -0.61 [-1.15 to -0.08]); and in the basal forebrain (-0.47 [-0.94 to -0.01]), subcallosal area (-0.55 [-1.01 to -0.08]), and the posterior orbital gyrus (-0.55 [-1.02 to -0.08]) in females. Cortical thinning was demonstrated for frontal and occipital regions 3 months postinjury in males with mTBI with persistent symptoms vs without persistent symptoms (-0.80 [-1.55 to -0.05] to -0.83 [-1.56 to -0.10]) and 6 months postinjury in females and younger children with mTBI with persistent symptoms relative to mTBI without persistent symptoms and OI (-1.42 [-2.29 to -0.45] to -0.91 [-1.81 to -0.01]). DISCUSSION: These findings signal little diagnostic and prognostic utility of postacute gray matter macrostructure in pediatric mTBI. However, mTBI altered the typical course of cortical gray matter thinning up to 6 months postinjury, even after symptoms typically abate in most children. Collapsing across symptom status obscured the neurobiological heterogeneity of discrete clinical outcomes after pediatric mTBI. The results illustrate the need to examine neurobiology in relation to clinical outcomes and within a neurodevelopmental framework.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Femenino , Humanos , Masculino , Niño , Conmoción Encefálica/diagnóstico por imagen , Estudios Longitudinales , Estudios Prospectivos , Sustancia Gris/diagnóstico por imagen , Adelgazamiento de la Corteza Cerebral
8.
Brain Lang ; 236: 105216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525719

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) shows promise in improving speech production in post-stroke aphasia. Limited evidence suggests pairing rTMS with speech therapy may result in greater improvements. Twenty stroke survivors (>6 months post-stroke) were randomized to receive either sham rTMS plus multi-modality aphasia therapy (M-MAT) or rTMS plus M-MAT. For the first time, we demonstrate that rTMS combined with M-MAT is feasible, with zero adverse events and minimal attrition. Both groups improved significantly over time on all speech and language outcomes. However, improvements did not differ between rTMS or sham. We found that rTMS and sham groups differed in lesion location, which may explain speech and language outcomes as well as unique patterns of BOLD signal change within each group. We offer practical considerations for future studies and conclude that while combination therapy of rTMS plus M-MAT in chronic post-stroke aphasia is safe and feasible, personalized intervention may be necessary.


Asunto(s)
Afasia , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estimulación Magnética Transcraneal , Proyectos Piloto , Afasia/etiología , Afasia/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Logopedia , Daño Encefálico Crónico , Resultado del Tratamiento
9.
Mol Psychiatry ; 28(3): 1182-1189, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36434057

RESUMEN

Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC participants (age 19.3±4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions. CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical thickness was observed among CHR-C compared to other groups across 2.9±1.8 months, on average, in several cortical areas. ROC analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age2, and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals. Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.


Asunto(s)
Adelgazamiento de la Corteza Cerebral , Trastornos Psicóticos , Humanos , Femenino , Adolescente , Masculino , Estudios Longitudinales , Etnicidad , Grupos Minoritarios , Síntomas Prodrómicos
10.
Inflamm Bowel Dis ; 29(3): 405-416, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35590449

RESUMEN

BACKGROUND: Behavioral symptoms, including mood disorders, substantially impact the quality of life of patients with inflammatory bowel disease (IBD), even when clinical remission is achieved. Here, we used multimodal magnetic resonance imaging (MRI) to determine if IBD is associated with changes in the structure and function of deep gray matter brain regions that regulate and integrate emotional, cognitive, and stress responses. METHODS: Thirty-five patients with ulcerative colitis (UC) or Crohn's disease (CD) and 32 healthy controls underwent 3 Tesla MRIs to assess volume, neural activity, functional connection strength (connectivity), inflammation, and neurodegeneration of key deep gray matter brain regions (thalamus, caudate, pallidum, putamen, amygdala, hippocampus, and hypothalamus) involved in emotional, cognitive and stress processing. Associations with sex, presence of pain, disease activity, and C-reactive protein (CRP) concentration were examined. RESULTS: Significantly increased activity and functional connectivity were observed in cognitive and emotional processing brain regions, including parts of the limbic system, basal ganglia, and hypothalamus of IBD patients compared with healthy controls. Inflammatory bowel disease patients exhibited significantly increased volumes of the amygdala and hypothalamus, as well as evidence of neurodegeneration in the putamen and pallidum. Hippocampal neural activity was increased in IBD patients with active disease. The volume of the thalamus was positively correlated with CRP concentration and was increased in females experiencing pain. CONCLUSIONS: Patients with IBD exhibit functional and structural changes in the limbic and striatal systems. These changes may be targets for assessing or predicting the response to therapeutic interventions aimed at improving comorbid emotional and cognitive symptoms.


Magnetic resonance imaging revealed structural and functional changes within the brains of inflammatory bowel disease patients, in regions known to be involved in processing brain signals associated with behavioral symptoms, anxiety, pain, stress, and cognitive deficits.


Asunto(s)
Colitis Ulcerosa , Sustancia Gris , Femenino , Humanos , Sustancia Gris/patología , Calidad de Vida , Encéfalo , Imagen por Resonancia Magnética/métodos , Colitis Ulcerosa/patología , Dolor
11.
Front Hum Neurosci ; 16: 976013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337852

RESUMEN

Magnetic resonance imaging (MRI) can provide a number of measurements relevant to sport-related concussion (SRC) symptoms; however, most studies to date have used a single MRI modality and whole-brain exploratory analyses in attempts to localize concussion injury. This has resulted in highly variable findings across studies due to wide ranging symptomology, severity and nature of injury within studies. A multimodal MRI, symptom-guided region-of-interest (ROI) approach is likely to yield more consistent results. The functions of the cerebellum and basal ganglia transcend many common concussion symptoms, and thus these regions, plus the white matter tracts that connect or project from them, constitute plausible ROIs for MRI analysis. We performed diffusion tensor imaging (DTI), resting-state functional MRI, quantitative susceptibility mapping (QSM), and cerebral blood flow (CBF) imaging using arterial spin labeling (ASL), in youth aged 12-18 years following SRC, with a focus on the cerebellum, basal ganglia and white matter tracts. Compared to controls similar in age, sex and sport (N = 20), recent SRC youth (N = 29; MRI at 8 ± 3 days post injury) exhibited increased susceptibility in the cerebellum (p = 0.032), decreased functional connectivity between the caudate and each of the pallidum (p = 0.035) and thalamus (p = 0.021), and decreased diffusivity in the mid-posterior corpus callosum (p < 0.038); no changes were observed in recovered asymptomatic youth (N = 16; 41 ± 16 days post injury). For recent symptomatic-only SRC youth (N = 24), symptom severity was associated with increased susceptibility in the superior cerebellar peduncles (p = 0.011) and reduced activity in the cerebellum (p = 0.013). Fewer days between injury and MRI were associated with reduced cerebellar-parietal functional connectivity (p < 0.014), reduced activity of the pallidum (p = 0.002), increased CBF in the caudate (p = 0.005), and reduced diffusivity in the central corpus callosum (p < 0.05). Youth SRC is associated with acute cerebellar inflammation accompanied by reduced cerebellar activity and cerebellar-parietal connectivity, as well as structural changes of the middle regions of the corpus callosum accompanied by functional changes of the caudate, all of which resolve with recovery. Early MRI post-injury is important to establish objective MRI-based indicators for concussion diagnosis, recovery assessment and prediction of outcome.

12.
Front Neurol ; 13: 850642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35785336

RESUMEN

The analysis of large, multisite neuroimaging datasets provides a promising means for robust characterization of brain networks that can reduce false positives and improve reproducibility. However, the use of different MRI scanners introduces variability to the data. Managing those sources of variability is increasingly important for the generation of accurate group-level inferences. ComBat is one of the most promising tools for multisite (multiscanner) harmonization of structural neuroimaging data, but no study has examined its application to graph theory metrics derived from the structural brain connectome. The present work evaluates the use of ComBat for multisite harmonization in the context of structural network analysis of diffusion-weighted scans from the Advancing Concussion Assessment in Pediatrics (A-CAP) study. Scans were acquired on six different scanners from 484 children aged 8.00-16.99 years [Mean = 12.37 ± 2.34 years; 289 (59.7%) Male] ~10 days following mild traumatic brain injury (n = 313) or orthopedic injury (n = 171). Whole brain deterministic diffusion tensor tractography was conducted and used to construct a 90 x 90 weighted (average fractional anisotropy) adjacency matrix for each scan. ComBat harmonization was applied separately at one of two different stages during data processing, either on the (i) weighted adjacency matrices (matrix harmonization) or (ii) global network metrics derived using unharmonized weighted adjacency matrices (parameter harmonization). Global network metrics based on unharmonized adjacency matrices and each harmonization approach were derived. Robust scanner effects were found for unharmonized metrics. Some scanner effects remained significant for matrix harmonized metrics, but effect sizes were less robust. Parameter harmonized metrics did not differ by scanner. Intraclass correlations (ICC) indicated good to excellent within-scanner consistency between metrics calculated before and after both harmonization approaches. Age correlated with unharmonized network metrics, but was more strongly correlated with network metrics based on both harmonization approaches. Parameter harmonization successfully controlled for scanner variability while preserving network topology and connectivity weights, indicating that harmonization of global network parameters based on unharmonized adjacency matrices may provide optimal results. The current work supports the use of ComBat for removing multiscanner effects on global network topology.

13.
Hum Brain Mapp ; 43(12): 3809-3823, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35467058

RESUMEN

In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre-injury and 1-month post-injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion-weighted imaging at post-acute (2-33 days post-injury) and chronic (3 or 6 months via random assignment) post-injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, -0.58 (-1.04, -0.11), and superior longitudinal fasciculus, -0.49 (-0.90, -0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post-injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.


Asunto(s)
Conmoción Encefálica , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Niño , Imagen de Difusión Tensora/métodos , Humanos , Estudios Longitudinales , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen
14.
J Neurosci Methods ; 368: 109470, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973273

RESUMEN

Simultaneous EEG-fMRI is a growing and promising field, as it has great potential to further our understanding of the spatiotemporal dynamics of brain function in health and disease. In particular, there is much interest in understanding the fMRI correlates of brain activity in the gamma band (> 30 Hz), as these frequencies are thought to be associated with cognitive processes involving perception, attention, and memory, as well as with disorders such as schizophrenia and autism. However, progress in this area has been limited due to issues such as MR-induced artifacts in EEG recordings, which seem to be more problematic for gamma frequencies. This paper presents a noise removal method for the gamma band of EEG that is based on the Holo-Hilbert spectral analysis (HHSA), but with a new implementation strategy. HHSA uses a nested empirical mode decomposition (EMD) to identify amplitude and frequency modulations (AM and FM, respectively) by averaging over frequencies with high and significant powers. Our method examines gamma band by applying two layers of EMD to the FM and AM components, removing components with very low power based on the power-instantaneous frequency spectrum, and subsequently reconstructs the denoised gamma-band signal from the remaining components. Simulations demonstrate that our proposed method efficiently reduces artifacts while preserving the original gamma signal which is especially critical for simultaneous EEG/fMRI studies.


Asunto(s)
Artefactos , Electroencefalografía , Atención , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador
15.
Brain Imaging Behav ; 16(3): 991-1002, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34694520

RESUMEN

Motion can compromise image quality and confound results, especially in pediatric research. This study evaluated qualitative and quantitative approaches to motion artifacts detection and correction, and whether motion artifacts relate to injury history, age, or sex in children with mild traumatic brain injury or orthopedic injury relative to typically developing children. The concordance between qualitative and quantitative motion ratings was also examined. Children aged 8-16 years with mild traumatic brain injury (n = 141) or orthopedic injury (n = 73) were recruited from the emergency department and completed an MRI scan roughly 2 weeks post-injury. Typically developing children (n = 41) completed a single MRI scan. T1- and diffusion-weighted images were visually inspected and rated for motion artifacts by trained examiners. Quantitative estimates of motion artifacts were derived from FreeSurfer and FSL. Age (younger > older) and sex (boys > girls) were significantly associated with motion artifacts on both T1- and diffusion-weighted images. Children with mild traumatic brain or orthopedic injury had significantly more motion-corrupted diffusion-weighted volumes than typically developing children, but mild traumatic brain injury and orthopedic injury groups did not differ from each other. The exclusion of motion-corrupted volumes did not significantly change diffusion tensor imaging metrics. Results indicate that automated quantitative estimates of motion artifacts, which are less labour-intensive than manual methods, are appropriate. Results have implications for the reliability of structural MRI research and highlight the importance of considering motion artifacts in studies of pediatric mild traumatic brain injury.


Asunto(s)
Artefactos , Conmoción Encefálica , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/patología , Niño , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Movimiento (Física) , Reproducibilidad de los Resultados
16.
Hum Brain Mapp ; 43(3): 1032-1046, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34748258

RESUMEN

Sophisticated network-based approaches such as structural connectomics may help to detect a biomarker of mild traumatic brain injury (mTBI) in children. This study compared the structural connectome of children with mTBI or mild orthopedic injury (OI) to that of typically developing (TD) children. Children aged 8-16.99 years with mTBI (n = 83) or OI (n = 37) were recruited from the emergency department and completed 3T diffusion MRI 2-20 days postinjury. TD children (n = 39) were recruited from the community and completed diffusion MRI. Graph theory metrics were calculated for the binarized average fractional anisotropy among 90 regions. Multivariable linear regression and linear mixed effects models were used to compare groups, with covariates age, hemisphere, and sex, correcting for multiple comparisons. The two injury groups did not differ on graph theory metrics, but both differed from TD children in global metrics (local network efficiency: TD > OI, mTBI, d = 0.49; clustering coefficient: TD < OI, mTBI, d = 0.49) and regional metrics for the fusiform gyrus (lower degree centrality and nodal efficiency: TD > OI, mTBI, d = 0.80 to 0.96; characteristic path length: TD < OI, mTBI, d = -0.75 to -0.90) and in the superior and middle orbital frontal gyrus, paracentral lobule, insula, and thalamus (clustering coefficient: TD > OI, mTBI, d = 0.66 to 0.68). Both mTBI and OI demonstrated reduced global and regional network efficiency and segregation as compared to TD children. Findings suggest a general effect of childhood injury that could reflect pre- and postinjury factors that can alter brain structure. An OI group provides a more conservative comparison group than TD children for structural neuroimaging research in pediatric mTBI.


Asunto(s)
Conmoción Encefálica/patología , Encéfalo/patología , Imagen de Difusión Tensora , Fracturas Óseas/patología , Red Nerviosa/patología , Esguinces y Distensiones/patología , Adolescente , Encéfalo/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Niño , Femenino , Fracturas Óseas/diagnóstico por imagen , Humanos , Estudios Longitudinales , Masculino , Red Nerviosa/diagnóstico por imagen , Esguinces y Distensiones/diagnóstico por imagen
17.
Physiol Rep ; 9(21): e15106, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34755481

RESUMEN

Impairments of cognitive function during alterations in arterial blood gases (e.g., high-altitude hypoxia) may result from the disruption of neurovascular coupling; however, the link between changes in arterial blood gases, cognition, and cerebral blood flow (CBF) is poorly understood. To interrogate this link, we developed a multimodal empirical strategy capable of monitoring neural correlates of cognition and CBF simultaneously. Human participants performed a sustained attention task during hypoxia, hypercapnia, hypocapnia, and normoxia while electroencephalographic (EEG) activity and CBF (middle and posterior cerebral arteries; transcranial Doppler ultrasound) were simultaneously measured. The protocol alternated between rest and engaging in a visual target detection task that required participants to monitor a sequence of brief-duration colored circles and detect infrequent, longer duration circles (targets). The target detection task was overlaid on a large, circular checkerboard that provided robust visual stimulation. Spectral decomposition and event-related potential (ERP) analyses were applied to the EEG data to investigate spontaneous and task-specific fluctuations in neural activity. There were three main sets of findings: (1) spontaneous alpha oscillatory activity was modulated as a function of arterial CO2 (hypocapnia and hypercapnia), (2) task-related neurovascular coupling was disrupted by all arterial blood gas manipulations, and (3) changes in task-related alpha and theta band activity and attenuation of the P3 ERP component amplitude were observed during hypocapnia. Since alpha and theta are linked with suppression of visual processing and executive control and P3 amplitude with task difficulty, these data suggest that transient arterial blood gas changes can modulate multiple stages of cognitive information processing.


Asunto(s)
Atención , Encéfalo/fisiología , Dióxido de Carbono/sangre , Potenciales Relacionados con Evento P300 , Acoplamiento Neurovascular , Adulto , Ritmo alfa , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Child Neurol ; 36(10): 867-874, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966537

RESUMEN

OBJECTIVE: The long-term consequences of pediatric concussion on brain structure are poorly understood. This study aimed to evaluate the presence and clinical significance of cerebral microbleeds several years after pediatric concussion. METHODS: Children and adolescents 8-19 years of age with either a history of concussion (n = 35), or orthopedic injury (n = 20) participated. Mean time since injury for the sample was 30.4 months (SD = 19.6). Participants underwent susceptibility-weighted imaging, rated their depression and postconcussion symptoms, and completed cognitive testing. Parents of participants also completed symptom ratings for their child. Hypointensities in susceptibility-weighted images indicative of cerebral microbleeds were calculated as a measure of hypointensity burden. RESULTS: Hypointensity burden did not differ significantly between participants with a history of concussion and those with a history of orthopedic injury. Depression ratings (self and parent report), postconcussion symptom ratings (self and parent report), and cognitive performance did not significantly correlate with hypointensity burden in the concussion group. CONCLUSIONS: These findings suggest that at approximately 2.5 years postinjury, children and adolescents with prior concussion do not have a greater amount of cerebral microbleeds compared to those with orthopedic injury. Future research should use longitudinal study designs and investigate children with persistent postconcussive symptoms to gain better insight into the long-term effects of concussion on cerebral microbleeds.


Asunto(s)
Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/etiología , Imagen por Resonancia Magnética/métodos , Microvasos/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Conmoción Encefálica/patología , Hemorragia Cerebral/patología , Niño , Femenino , Humanos , Masculino , Microvasos/patología , Adulto Joven
19.
Epilepsia ; 62(5): 1105-1118, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33782964

RESUMEN

OBJECTIVE: Scalp electroencephalographic (EEG)-functional magnetic resonance imaging (fMRI) studies suggest that the maximum blood oxygen level-dependent (BOLD) response to an interictal epileptiform discharge (IED) identifies the area of IED generation. However, the maximum BOLD response has also been reported in distant, seemingly irrelevant areas. Given the poor postoperative outcomes associated with extra-temporal lobe epilepsy, we hypothesized this finding is more common when analyzing extratemporal IEDs as compared to temporal IEDs. We further hypothesized that a subjective, holistic assessment of other significant BOLD clusters to identify the most clinically relevant cluster could be used to overcome this limitation and therefore better identify the likely origin of an IED. Specifically, we also considered the second maximum cluster and the cluster closest to the electrode contacts where the IED was observed. METHODS: Maps of significant IED-related BOLD activation were generated for 48 different IEDs recorded from 33 patients who underwent intracranial EEG-fMRI. The locations of the maximum, second maximum, and closest clusters were identified for each IED. An epileptologist, blinded to these cluster assignments, selected the most clinically relevant BOLD cluster, taking into account all available clinical information. The distances between these BOLD clusters and their corresponding IEDs were then measured. RESULTS: The most clinically relevant cluster was the maximum cluster for 56% (27/48) of IEDs, the second maximum cluster for 13% (6/48) of IEDs, and the closest cluster for 31% (15/48) of IEDs. The maximum clusters were closer to IED contacts for temporal than for extratemporal IEDs (p = .022), whereas the most clinically relevant clusters were not significantly different (p = .056). SIGNIFICANCE: The maximum BOLD response to IEDs may not always be the most indicative of IED origin. We propose that available clinical information should be used in conjunction with EEG-fMRI data to identify a BOLD cluster representative of the IED origin.


Asunto(s)
Mapeo Encefálico/métodos , Epilepsia Refractaria/fisiopatología , Electrocorticografía/métodos , Epilepsias Parciales/fisiopatología , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
20.
Neurology ; 95(10): e1333-e1340, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641520

RESUMEN

OBJECTIVE: To assess cerebrovascular reactivity in response to a visual task in participants with cerebral amyloid angiopathy (CAA), Alzheimer disease (AD), and mild cognitive impairment (MCI) using fMRI. METHODS: This prospective cohort study included 40 patients with CAA, 22 with AD, 27 with MCI, and 25 healthy controls. Each participant underwent a visual fMRI task using a contrast-reversing checkerboard stimulus. Visual evoked potentials (VEPs) were used to compare visual cortex neuronal activity in 83 participants. General linear models using least-squares means, adjusted for multiple comparisons with the Tukey test, were used to estimate mean blood oxygen level-dependent (BOLD) signal change during the task and VEP differences between groups. RESULTS: After adjustment for age and hypertension, estimated mean BOLD response amplitude was as follows: CAA 1.88% (95% confidence interval [CI] 1.60%-2.15%), AD 2.26% (1.91%-2.61%), MCI 2.15% (1.84%-2.46%), and control 2.65% (2.29%-3.00%). Only patients with CAA differed from controls (p = 0.01). In the subset with VEPs, group was not associated with prolonged latencies or lower amplitudes. Lower BOLD amplitude response was associated with higher white matter hyperintensity (WMH) volumes in CAA (for each 0.1% lower BOLD response amplitude, the WMH volume was 9.2% higher, 95% CI 6.0%-12.4%) but not other groups (p = 0.002 for interaction) when controlling for age and hypertension. CONCLUSIONS: Mean visual BOLD response amplitude was lowest in participants with CAA compared to controls, without differences in VEP latencies and amplitudes. This suggests that the impaired visual BOLD response is due to reduced vascular reactivity in CAA. In contrast to participants with CAA, the visual BOLD response amplitude did not differ between those with AD or MCI and controls.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Angiopatía Amiloide Cerebral/fisiopatología , Circulación Cerebrovascular/fisiología , Disfunción Cognitiva/fisiopatología , Anciano , Estudios de Cohortes , Estudios Transversales , Imagen Eco-Planar , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Corteza Visual/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...