Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(1): 010401, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242646

RESUMEN

Dual-unitary circuits are a class of quantum systems for which exact calculations of various quantities are possible, even for circuits that are nonintegrable. The array of known exact results paints a compelling picture of dual-unitary circuits as rapidly thermalizing systems. However, in this Letter, we present a method to construct dual-unitary circuits for which some simple initial states fail to thermalize, despite the circuits being "maximally chaotic," ergodic, and mixing. This is achieved by embedding quantum many-body scars in a circuit of arbitrary size and local Hilbert space dimension. We support our analytic results with numerical simulations showing the stark contrast in the rate of entanglement growth from an initial scar state compared to nonscar initial states. Our results are well suited to an experimental test, due to the compatibility of the circuit layout with the native structure of current digital quantum simulators.

2.
Phys Rev E ; 107(4-1): 044102, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198837

RESUMEN

Understanding the thermodynamic role of measurement in quantum mechanical systems is a burgeoning field of study. In this article, we study a double quantum dot (DQD) connected to two macroscopic fermionic thermal reservoirs. We assume that the DQD is continuously monitored by a quantum point contact (QPC), which serves as a charge detector. Starting from a minimalist microscopic model for the QPC and reservoirs, we show that the local master equation of the DQD can alternatively be derived in the framework of repeated interactions and that this framework guarantees a thermodynamically consistent description of the DQD and its environment (including the QPC). We analyze the effect of the measurement strength and identify a regime in which particle transport through the DQD is both assisted and stabilized by dephasing. We also find that in this regime the entropic cost of driving the particle current with fixed relative fluctuations through the DQD is reduced. We thus conclude that under continuous measurement a more constant particle current may be achieved at a fixed entropic cost.

3.
Phys Rev E ; 106(3): L032104, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266914

RESUMEN

Recent experiments have demonstrated the generation of coherent mechanical oscillations in a suspended carbon nanotube, which are driven by an electric current through the device above a certain voltage threshold, in close analogy with a lasing transition. We investigate this phenomenon from the perspective of work extraction, by modeling a nanoelectromechanical device as a quantum flywheel or battery that converts electrical power into stored mechanical energy. We introduce a microscopic model that qualitatively matches the experimental finding, and we compute the Wigner function of the quantum vibrational mode in its nonequilibrium steady state. We characterize the threshold for self-sustained oscillations using two approaches to quantifying work deposition in nonequilibrium quantum thermodynamics: the ergotropy and the nonequilibrium free energy. We find that ergotropy serves as an order parameter for the phonon lasing transition. The framework we employ to describe work extraction is general and widely transferable to other mesoscopic quantum devices.

4.
Phys Rev Lett ; 129(2): 020601, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867451

RESUMEN

Recent experimental observation of weak ergodicity breaking in Rydberg atom quantum simulators has sparked interest in quantum many-body scars-eigenstates which evade thermalization at finite energy densities due to novel mechanisms that do not rely on integrability or protection by a global symmetry. A salient feature of some quantum many-body scars is their subvolume bipartite entanglement entropy. In this Letter, we demonstrate that such exact many-body scars also possess extensive multipartite entanglement structure if they stem from an su(2) spectrum generating algebra. We show this analytically, through scaling of the quantum Fisher information, which is found to be superextensive for exact scarred eigenstates in contrast to generic thermal states. Furthermore, we numerically study signatures of multipartite entanglement in the PXP model of Rydberg atoms, showing that extensive quantum Fisher information density can be generated dynamically by performing a global quench experiment. Our results identify a rich multipartite correlation structure of scarred states with significant potential as a resource in quantum enhanced metrology.

5.
Phys Rev E ; 104(3-1): 034120, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654075

RESUMEN

Out-of-time-order correlators (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalization in interacting quantum many-body systems. It was recently argued that the expected exponential growth of the OTOC is connected to the existence of correlations beyond those encoded in the standard Eigenstate Thermalization Hypothesis (ETH). We show explicitly, by an extensive numerical analysis of the statistics of operator matrix elements in conjunction with a detailed study of OTOC dynamics, that the OTOC is indeed a precise tool to explore the fine details of the ETH. In particular, while short-time dynamics is dominated by correlations, the long-time saturation behavior gives clear indications of an operator-dependent energy scale ω_{GOE} associated to the emergence of an effective Gaussian random matrix theory. We provide an estimation of the finite-size scaling of ω_{GOE} for the general class of observables composed of sums of local operators in the infinite-temperature regime and found linear behavior for the models considered.

6.
Phys Rev E ; 103(3-1): 032145, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33862795

RESUMEN

We examine how the presence of an excited-state quantum phase transition manifests in the dynamics of a many-body system subject to a sudden quench. Focusing on the Lipkin-Meshkov-Glick model initialized in the ground state of the ferromagnetic phase, we demonstrate that the work probability distribution displays non-Gaussian behavior for quenches in the vicinity of the excited-state critical point. Furthermore, we show that the entropy of the diagonal ensemble is highly susceptible to critical regions, making it a robust and practical indicator of the associated spectral characteristics. We assess the role that symmetry breaking has on the ensuing dynamics, highlighting that its effect is only present for quenches beyond the critical point. Finally, we show that similar features persist when the system is initialized in an excited state and briefly explore the behavior for initial states in the paramagnetic phase.

7.
Phys Rev E ; 103(1-1): 012133, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601640

RESUMEN

Fluctuations strongly affect the dynamics and functionality of nanoscale thermal machines. Recent developments in stochastic thermodynamics have shown that fluctuations in many far-from-equilibrium systems are constrained by the rate of entropy production via so-called thermodynamic uncertainty relations. These relations imply that increasing the reliability or precision of an engine's power output comes at a greater thermodynamic cost. Here we study the thermodynamics of precision for small thermal machines in the quantum regime. In particular, we derive exact relations between the power, power fluctuations, and entropy production rate for several models of few-qubit engines (both autonomous and cyclic) that perform work on a quantized load. Depending on the context, we find that quantum coherence can either help or hinder where power fluctuations are concerned. We discuss design principles for reducing such fluctuations in quantum nanomachines and propose an autonomous three-qubit engine whose power output for a given entropy production is more reliable than would be allowed by any classical Markovian model.

8.
Phys Rev Lett ; 125(16): 160602, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124861

RESUMEN

Information is physical but information is also processed in finite time. Where computing protocols are concerned, finite-time processing in the quantum regime can dynamically generate coherence. Here we show that this can have significant thermodynamic implications. We demonstrate that quantum coherence generated in the energy eigenbasis of a system undergoing a finite-time information erasure protocol yields rare events with extreme dissipation. These fluctuations are of purely quantum origin. By studying the full statistics of the dissipated heat in the slow-driving limit, we prove that coherence provides a non-negative contribution to all statistical cumulants. Using the simple and paradigmatic example of single bit erasure, we show that these extreme dissipation events yield distinct, experimentally distinguishable signatures.

9.
Phys Rev Lett ; 125(8): 080402, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909771

RESUMEN

The precise measurement of low temperatures is a challenging, important, and fundamental task for quantum science. In particular, in situ thermometry is highly desirable for cold atomic systems due to their potential for quantum simulation. Here, we demonstrate that the temperature of a noninteracting Fermi gas can be accurately inferred from the nonequilibrium dynamics of impurities immersed within it, using an interferometric protocol and established experimental methods. Adopting tools from the theory of quantum parameter estimation, we show that our proposed scheme achieves optimal precision in the relevant temperature regime for degenerate Fermi gases in current experiments. We also discover an intriguing trade-off between measurement time and thermometric precision that is controlled by the impurity-gas coupling, with weak coupling leading to the greatest sensitivities. This is explained as a consequence of the slow decoherence associated with the onset of the Anderson orthogonality catastrophe, which dominates the gas dynamics following its local interaction with the immersed impurity.

10.
Phys Rev Lett ; 125(7): 070605, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857540

RESUMEN

Eigenstate thermalization is widely accepted as the mechanism behind thermalization in generic isolated quantum systems. Using the example of a single magnetic defect embedded in the integrable spin-1/2 XXZ chain, we show that locally perturbing an integrable system can give rise to eigenstate thermalization. Unique to such setups is the fact that thermodynamic and transport properties of the unperturbed integrable chain emerge in properties of the eigenstates of the perturbed (nonintegrable) one. Specifically, we show that the diagonal matrix elements of observables in the perturbed eigenstates follow the microcanonical predictions for the integrable model, and that the ballistic character of spin transport in the integrable model is manifest in the behavior of the off-diagonal matrix elements of the current operator in the perturbed eigenstates.

11.
Phys Rev Lett ; 124(4): 040605, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058780

RESUMEN

We study the quantum Fisher information (QFI) and, thus, the multipartite entanglement structure of thermal pure states in the context of the eigenstate thermalization hypothesis (ETH). In both the canonical ensemble and the ETH, the quantum Fisher information may be explicitly calculated from the response functions. In the case of the ETH, we find that the expression of the QFI bounds the corresponding canonical expression from above. This implies that although average values and fluctuations of local observables are indistinguishable from their canonical counterpart, the entanglement structure of the state is starkly different; with the difference amplified, e.g., in the proximity of a thermal phase transition. We also provide a state-of-the-art numerical example of a situation where the quantum Fisher information in a quantum many-body system is extensive while the corresponding quantity in the canonical ensemble vanishes. Our findings have direct relevance for the entanglement structure in the asymptotic states of quenched many-body dynamics.

12.
Phys Rev Lett ; 123(9): 090604, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524493

RESUMEN

Thermodynamic uncertainty relations (TURs) place strict bounds on the fluctuations of thermodynamic quantities in terms of the associated entropy production. In this Letter, we identify the tightest (and saturable) matrix-valued TUR that can be derived from the exchange fluctuation theorems describing the statistics of heat and particle flow between multiple systems of arbitrary dimensions. Our result holds for both quantum and classical systems, undergoing general finite-time nonstationary processes. Moreover, it provides bounds not only for the variances, but also for the correlations between thermodynamic quantities. To demonstrate the relevance of TURs to the design of nanoscale machines, we consider the operation of a 2-qubit swap engine undergoing an Otto cycle and show how our results can be used to place strict bounds on the correlations between heat and work.

13.
Phys Rev Lett ; 123(8): 080602, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31491211

RESUMEN

We realize a heat engine using a single-electron spin as a working medium. The spin pertains to the valence electron of a trapped ^{40}Ca^{+} ion, and heat reservoirs are emulated by controlling the spin polarization via optical pumping. The engine is coupled to the ion's harmonic-oscillator degree of freedom via spin-dependent optical forces. The oscillator stores the work produced by the heat engine and, therefore, acts as a flywheel. We characterize the state of the flywheel by reconstructing the Husimi Q function of the oscillator after different engine run times. This allows us to infer both the deposited energy and the corresponding fluctuations throughout the onset of operation, starting in the oscillator ground state. In order to understand the energetics of the flywheel, we determine its ergotropy, i.e., the maximum amount of work which can be further extracted from it. Our results demonstrate how the intrinsic fluctuations of a microscopic heat engine fundamentally limit performance.

14.
Phys Rev Lett ; 123(2): 020603, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386549

RESUMEN

We investigate how the presence of a single-particle mobility edge in a system can generate strong energy current rectification. Specifically, we study a quadratic bosonic chain subject to a quasiperiodic potential and coupled at its boundaries to spin baths of differing temperature. We find that rectification increases by orders of magnitude depending on the spatial position in the chain of localized eigenstates above the mobility edge. The largest enhancements occur when the coupling of one bath to the system is dominated by a localized eigenstate, while the other bath couples to numerous delocalized eigenstates. By tuning the parameters of the quasiperiodic potential it is thus possible to vary the amplitude, and even invert the direction, of the rectification.

15.
Phys Rev E ; 95(6-1): 062127, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709230

RESUMEN

Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type 〈[W_{τ},V]^{†}[W_{τ},V]〉, whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.

16.
Phys Rev Lett ; 118(15): 150601, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28452497

RESUMEN

Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when N batteries are charged collectively. We first derive analytic upper bounds for the collective quantum advantage in charging power for two choices of constraints on the charging Hamiltonian. We then demonstrate that even in the absence of quantum entanglement this advantage can be extensive. For our main result, we provide an upper bound to the achievable quantum advantage when the interaction order is restricted; i.e., at most k batteries are interacting. This constitutes a fundamental limit on the advantage offered by quantum technologies over their classical counterparts.

17.
Artículo en Inglés | MEDLINE | ID: mdl-25871066

RESUMEN

Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

18.
Phys Rev Lett ; 114(6): 060602, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25723198

RESUMEN

Using the operational framework of completely positive, trace preserving operations and thermodynamic fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum system. Our bound comes from a nonphenomenological derivation of the Landauer principle which holds for generic nonequilibrium dynamics. Furthermore, the bound depends on the nonunitality of dynamics, giving it a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2 system coupled to an interacting spin chain at finite temperature.

19.
Sci Rep ; 4: 6995, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25385291

RESUMEN

Maxwell's daemon is a popular personification of a principle connecting information gain and extractable work in thermodynamics. A Szilard Engine is a particular hypothetical realization of Maxwell's daemon, which is able to extract work from a single thermal reservoir by measuring the position of particle(s) within the system. Here we investigate the role of particle statistics in the whole process; namely, how the extractable work changes if instead of classical particles fermions or bosons are used as the working medium. We give a unifying argument for the optimal work in the different cases: the extractable work is determined solely by the information gain of the initial measurement, as measured by the mutual information, regardless of the number and type of particles which constitute the working substance.

20.
Phys Rev Lett ; 113(14): 140601, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25325627

RESUMEN

We report the experimental reconstruction of the nonequilibrium work probability distribution in a closed quantum system, and the study of the corresponding quantum fluctuation relations. The experiment uses a liquid-state nuclear magnetic resonance platform that offers full control on the preparation and dynamics of the system. Our endeavors enable the characterization of the out-of-equilibrium dynamics of a quantum spin from a finite-time thermodynamics viewpoint.


Asunto(s)
Modelos Teóricos , Teoría Cuántica , Cloroformo/química , Análisis de Fourier , Cinética , Espectroscopía de Resonancia Magnética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA