Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Vet Sci ; 11: 1396714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962707

RESUMEN

Introduction: Coxiella burnetii (C. burnetii)-infected livestock and wildlife have been epidemiologically linked to human Q fever outbreaks. Despite this growing zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and studies to understand their epidemiologic role are needed. In C. burnetii-endemic areas, ticks have been reported to harbor and spread C. burnetii and may serve as indicators of risk of infection in wild animal habitats. Therefore, the aim of this study was to compare molecular techniques for detecting C. burnetii DNA in ticks. Methods: In total, 169 ticks from wild animals and cattle in wildlife conservancies in northern Kenya were screened for C. burnetii DNA using a conventional PCR (cPCR) and two field-friendly techniques: Biomeme's C. burnetii qPCR Go-strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) analysis assay. Results were evaluated, in the absence of a gold standard test, using Bayesian latent class analysis (BLCA) to characterize the proportion of C. burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three tests. Results: The final BLCA model included main effects and estimated that PCR-HRM had the highest Se (86%; 95% credible interval: 56-99%), followed by the Biomeme (Se = 57%; 95% credible interval: 34-90%), with the estimated Se of the cPCR being the lowest (24%, 95% credible interval: 10-47%). Specificity estimates for all three assays ranged from 94 to 98%. Based on the model, an estimated 16% of ticks had C. burnetii DNA present. Discussion: These results reflect the endemicity of C. burnetii in northern Kenya and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. Further studies using ticks and wild animal samples will enhance understanding of the epidemiological role of ticks in Q fever.

2.
Sci Rep ; 14(1): 14768, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926469

RESUMEN

Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.


Asunto(s)
Bacterias , Elefantes , Microbiota , ARN Ribosómico 16S , Animales , Elefantes/microbiología , Elefantes/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Microbiota/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sistema Respiratorio/microbiología , Animales de Zoológico/microbiología , Análisis de Secuencia de ADN/métodos , Animales Salvajes/microbiología , Filogenia
4.
One Health ; 18: 100702, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38487729

RESUMEN

This study investigated the presence of Mycobacterium bovis (M. bovis) DNA in archived human sputum samples previously collected from residents who reside adjacent to the M. bovis-endemic Hluhluwe-iMfolozi wildlife park, South Africa (SA). Sixty-eight sputum samples were GeneXpert MTB/RIF Ultra-positive for M. tuberculosis complex (MTBC) DNA but culture negative for M. tuberculosis. Amplification and Sanger sequencing of hsp65 and rpoB genes from DNA extracted from stored heat-inactivated sputum samples confirmed the presence of detectable amounts of MTBC from 20 out of the 68 sputum samples. Region of difference PCR, spoligotyping and gyrB long-read amplicon deep sequencing identified M. bovis (n = 10) and M. tuberculosis (n = 7). Notably, M. bovis spoligotypes SB0130 and SB1474 were identified in 4 samples, with SB0130 previously identified in local cattle and wildlife and SB1474 exclusively in African buffaloes in the adjacent park. M. bovis DNA in sputum, from people living near the park, underscores zoonotic transmission potential in SA. Identification of spoligotypes specifically associated with wildlife only and spoligotypes found in livestock as well as wildlife, highlights the complexity of TB epidemiology at wildlife-livestock-human interfaces. These findings support the need for integrated surveillance and control strategies to curb potential spillover and for the consideration of human M. bovis infection in SA patients with positive Ultra results.

5.
Front Microbiol ; 15: 1349163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419629

RESUMEN

Animal tuberculosis, caused by Mycobacterium bovis, presents a significant threat to both livestock industries and public health. Mycobacterium bovis tests rely on detecting antigen specific immune responses, which can be influenced by exposure to non-tuberculous mycobacteria, test technique, and duration and severity of infection. Despite advancements in direct M. bovis detection, mycobacterial culture remains the primary diagnostic standard. Recent efforts have explored culture-independent PCR-based methods for identifying mycobacterial DNA in respiratory samples. This study aimed to detect M. bovis in nasal swabs from goats (Capra hircus) cohabiting with M. bovis-infected cattle in KwaZulu-Natal, South Africa. Nasal swabs were collected from 137 communal goats exposed to M. bovis-positive cattle and 20 goats from a commercial dairy herd without M. bovis history. Swabs were divided into three aliquots for analysis. The first underwent GeneXpert® MTB/RIF Ultra assay (Ultra) screening. DNA from the second underwent mycobacterial genus-specific PCR and Sanger sequencing, while the third underwent mycobacterial culture followed by PCR and sequencing. Deep sequencing identified M. bovis DNA in selected Ultra-positive swabs, confirmed by region-of-difference (RD) PCR. Despite no other evidence of M. bovis infection, viable M. bovis was cultured from three communal goat swabs, confirmed by PCR and sequencing. Deep sequencing of DNA directly from swabs identified M. bovis in the same culture-positive swabs and eight additional communal goats. No M. bovis was found in commercial dairy goats, but various NTM species were detected. This highlights the risk of M. bovis exposure or infection in goats sharing pastures with infected cattle. Rapid Ultra screening shows promise for selecting goats for further M. bovis testing. These techniques may enhance M. bovis detection in paucibacillary samples and serve as valuable research tools.

6.
IJID Reg ; 10: 140-145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38304760

RESUMEN

Nontuberculous mycobacteria (NTM) are a group of acid-fast mycobacteria other than Mycobacterium tuberculosis complex (MTBC) that cause pulmonary disease that is similar to the disease caused by MTBC. International guidelines for the diagnosis of pulmonary NTM disease are rigid and have remained unchanged for nearly 2 decades. In this opinion piece, we provide a new perspective on the traditional criteria by suggesting a diagnostic algorithm that incorporates direct molecular identification of NTM performed on raw sputum specimens (using Sanger or targeted deep sequencing approaches, among others) paired with traditional culture methods. Our approach ensures a more rapid diagnosis of pulmonary NTM disease, thus, facilitating timeous clinical diagnosis, and prompt treatment initiation, where indicated, and leverages recent advances in novel molecular techniques into routine NTM identification practice.

7.
Sci Rep ; 14(1): 357, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172248

RESUMEN

Mycobacterium bovis (M. bovis) infection has been identified in black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros populations in Kruger National Park, South Africa. However, it is unknown whether M. bovis infected rhinoceros, like humans and cattle, can shed mycobacteria in respiratory secretions. Limited studies have suggested that rhinoceros with subclinical M. bovis infection may present minimal risk for transmission. However, recent advances that have improved detection of Mycobacterium tuberculosis complex (MTBC) members in paucibacillary samples warranted further investigation of rhinoceros secretions. In this pilot study, nasal swab samples from 75 rhinoceros with defined infection status based on M. bovis antigen-specific interferon gamma release assay (IGRA) results were analysed by GeneXpert MTB/RIF Ultra, BACTEC MGIT and TiKa-MGIT culture. Following culture, speciation was done using targeted PCRs followed by Sanger sequencing for mycobacterial species identification, and a region of difference (RD) 4 PCR. Using these techniques, MTBC was detected in secretions from 14/64 IGRA positive rhinoceros, with viable M. bovis having been isolated in 11 cases, but not in any IGRA negative rhinoceros (n = 11). This finding suggests the possibility that MTBC/M. bovis-infected rhinoceros may be a source of infection for other susceptible animals sharing the environment.


Asunto(s)
Mycobacterium bovis , Tuberculosis , Humanos , Animales , Bovinos , Mycobacterium bovis/genética , Tuberculosis/diagnóstico , Tuberculosis/veterinaria , Tuberculosis/microbiología , Proyectos Piloto , Ensayos de Liberación de Interferón gamma/veterinaria , Perisodáctilos/microbiología
8.
Front Microbiol ; 14: 1307440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075895

RESUMEN

Animal tuberculosis is a significant infectious disease affecting both livestock and wildlife populations worldwide. Effective disease surveillance and characterization of Mycobacterium bovis (M. bovis) strains are essential for understanding transmission dynamics and implementing control measures. Currently, sequencing of genomic information has relied on culture-based methods, which are time-consuming, resource-demanding, and concerning in terms of biosafety. This study explores the use of culture-independent long-read whole-genome sequencing (WGS) for a better understanding of M. bovis epidemiology in African buffaloes (Syncerus caffer). By comparing two sequencing approaches, we evaluated the efficacy of Illumina WGS performed on culture extracts and culture-independent Oxford Nanopore adaptive sampling (NAS). Our objective was to assess the potential of NAS to detect genomic variants without sample culture. In addition, culture-independent amplicon sequencing, targeting mycobacterial-specific housekeeping and full-length 16S rRNA genes, was applied to investigate the presence of microorganisms, including nontuberculous mycobacteria. The sequencing quality obtained from DNA extracted directly from tissues using NAS is comparable to the sequencing quality of reads generated from culture-derived DNA using both NAS and Illumina technologies. We present a new approach that provides complete and accurate genome sequence reconstruction, culture independently, and using an economically affordable technique.

9.
Front Immunol ; 14: 1216262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727792

RESUMEN

Background: Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (TB) which poses a threat to many of South Africa's most iconic wildlife species, including leopards (Panthera pardus). Due to limited tests for wildlife, the development of accurate ante-mortem tests for TB diagnosis in African big cat populations is urgently required. The aim of this study was to evaluate currently available immunological assays for their ability to detect M. bovis infection in leopards. Methods: Leopard whole blood (n=19) was stimulated using the QuantiFERON Gold Plus In-Tube System (QFT) to evaluate cytokine gene expression and protein production, along with serological assays. The GeneXpert® MTB/RIF Ultra (GXU®) qPCR assay, mycobacterial culture, and speciation by genomic regions of difference PCR, was used to confirm M. bovis infection in leopards. Results: Mycobacterium bovis infection was confirmed in six leopards and individuals that were tuberculin skin test (TST) negative were used for comparison. The GXU® assay was positive using all available tissue homogenates (n=5) from M. bovis culture positive animals. Mycobacterium bovis culture-confirmed leopards had greater antigen-specific responses, in the QFT interferon gamma release assay, CXCL9 and CXCL10 gene expression assays, compared to TST-negative individuals. One M. bovis culture-confirmed leopard had detectable antibodies using the DPP® Vet TB assay. Conclusion: Preliminary results demonstrated that immunoassays and TST may be potential tools to identify M. bovis-infected leopards. The GXU® assay provided rapid direct detection of infected leopards. Further studies should aim to improve TB diagnosis in wild felids, which will facilitate disease surveillance and screening.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium bovis , Panthera , Animales , Gatos , Animales Salvajes , Anticuerpos
10.
Prog Mol Biol Transl Sci ; 201: 41-92, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37770176

RESUMEN

Highly drug-resistant strains are not uncommon among the Mycobacterium genus, with patients requiring lengthy antibiotic treatment regimens with multiple drugs and harmful side effects. This alarming increase in antibiotic resistance globally has renewed the interest in mycobacteriophage therapy for both Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. With the increasing number of genetically well-characterized mycobacteriophages and robust engineering tools to convert temperate phages to obligate lytic phages, the phage cache against extensive drug-resistant mycobacteria is constantly expanding. Synergistic effects between phages and TB drugs are also a promising avenue to research, with mycobacteriophages having several additional advantages compared to traditional antibiotics due to their different modes of action. These advantages include less side effects, a narrow host spectrum, biofilm penetration, self-replication at the site of infection and the potential to be manufactured on a large scale. In addition, mycobacteriophage enzymes, not yet in clinical use, warrant further studies with their additional benefits for rupturing host bacteria thereby limiting resistance development as well as showing promise in vitro to act synergistically with TB drugs. Before mycobacteriophage therapy can be envisioned as part of routine care, several obstacles must be overcome to translate in vitro work into clinical practice. Strategies to target intracellular bacteria and selecting phage cocktails to limit cross-resistance remain important avenues to explore. However, insight into pathophysiological host-phage interactions on a molecular level and innovative solutions to transcend mycobacteriophage therapy impediments, offer sufficient encouragement to explore phage therapy. Recently, the first successful clinical studies were performed using a mycobacteriophage-constructed cocktail to treat non-tuberculosis mycobacteria, providing substantial insight into lessons learned and potential pitfalls to avoid in order to ensure favorable outcomes. However, due to mycobacterium strain variation, mycobacteriophage therapy remains personalized, only being utilized in compassionate care cases until there is further regulatory approval. Therefore, identifying the determinants that influence clinical outcomes that can expand the repertoire of mycobacteriophages for therapeutic benefit, remains key for their future application.

11.
Vet Immunol Immunopathol ; 257: 110559, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739737

RESUMEN

Animal tuberculosis affects a wide range of domestic and wild animal species, including goats (Capra hircus). In South Africa, Mycobacterium tuberculosis complex (MTBC) testing and surveillance in domestic goats is not widely applied, potentially leading to under recognition of goats as a potential source of M. bovis spread to cattle as well as humans and wildlife. The aim of this study was to estimate diagnostic test performance for four assays and determine whether M. bovis infection was present in goats sharing communal pastures with M. bovis positive cattle in the Umkhanyakude district of Northern Zululand, KwaZulu Natal. In 2019, 137 M. bovis-exposed goats were screened for MTBC infection with four diagnostic tests: the in vivo single intradermal comparative cervical tuberculin test (SICCT), in vitro QuantiFERON®-TB Gold (QFT) bovine interferon-gamma release assay (IGRA), QFT bovine interferon gamma induced protein 10 (IP-10) release assay (IPRA), and nasal swabs tested with the Cepheid GeneXpert® MTB/RIF Ultra (GXU) assay for detection of MTBC DNA. A Bayesian latent class analysis was used to estimate MTBC prevalence and diagnostic test sensitivity and specificity. Among the 137 M. bovis-exposed goats, positive test results were identified in 15/136 (11.0%) goats by the SICCT; 4/128 (3.1%) goats by the IPRA; 2/128 (1.6%) goats by the IGRA; and 26/134 (19.4%) nasal swabs by the GXU. True prevalence was estimated by our model to be 1.1%, suggesting that goats in these communal herds are infected with MTBC at a low level. Estimated posterior means across the four evaluated assays ranged from 62.7% to 80.9% for diagnostic sensitivity and from 82.9% to 97.9% for diagnostic specificity, albeit estimates of the former (diagnostic sensitivity) were dependent on model assumptions. The application of a Bayesian latent class analysis and multiple ante-mortem test results may improve detection of MTBC, especially when prevalence is low. Our results provide a foundation for further investigation to confirm infection in communal goat herds and identify previously unrecognized sources of intra- and inter-species transmission of MTBC.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de las Cabras , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Bovinos , Sudáfrica , Cabras , Análisis de Clases Latentes , Teorema de Bayes , Tuberculosis/veterinaria , Prueba de Tuberculina/veterinaria , Animales Salvajes , Sensibilidad y Especificidad
12.
J Wildl Dis ; 59(1): 128-137, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584337

RESUMEN

Elephant endotheliotropic herpesvirus (EEHV) infection can cause acute, often fatal, EEHV hemorrhagic disease in free-ranging and human-managed Asian elephants (Elephas maximus) and human-managed African elephants (Loxodonta africana). However, significant knowledge gaps exist pertaining to the presence of EEHV in free-ranging African elephant populations. We retrospectively screened 142 opportunistically collected samples (blood, n=98; bronchoalveolar lavage (BAL) fluid, n=21; trunk wash (TW) fluid, n=23) obtained between 2010 and 2020 from 98 free-ranging African elephants in the Kruger National Park, South Africa, for the presence of different EEHVs, as well as determining the real-time quantitative PCR positivity rate in this population. With the use of validated, previously published DNA extraction and real-time quantitative PCR protocols provided by the National Elephant Herpesvirus Laboratory (Washington, DC, USA), EEHV was detected in nine male African elephants from samples collected in 2011 (n=1), 2013 (n=1), 2018 (n=2), 2019 (n=4), and 2020 (n=1). Viral detection was more common in respiratory compared with blood samples. Six elephants tested positive for EEHV2 subtype (blood, n=2; BAL, n=3; TW, n=2), including one individual that tested positive on matched respiratory samples (BAL and TW). Four elephants tested positive for EEHV3-4-7 (blood, n=1; BAL, n=2; TW, n=1), whereas EEHV6 was not detected in any of the study animals. One elephant tested positive for both EEHV2 and EEHV3-4-7 in the same BAL sample. Even though the levels of viremia varied between 158 and 1,292 viral genome equivalents/mL blood and viral shedding of EEHV2 and EEHV3-4-7 was detected in respiratory samples, no clinical signs were observed in these apparently healthy elephants. These findings are consistent with reports of asymptomatic EEHV infection in human-managed African elephants.


Asunto(s)
Elefantes , Infecciones por Herpesviridae , Herpesviridae , Humanos , Masculino , Animales , Sudáfrica , Parques Recreativos , Estudios Retrospectivos , Herpesviridae/genética , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/veterinaria
13.
Pathogens ; 11(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36558727

RESUMEN

Ante-mortem bovine tuberculosis (bTB) tests for buffaloes include the single comparative intradermal tuberculin test (SCITT), interferon-gamma (IFN-γ) release assay (IGRA) and IFN-γ-inducible protein 10 release assay (IPRA). Although parallel test interpretation increases the detection of Mycobacterium bovis (M. bovis)-infected buffaloes, these algorithms may not be suitable for screening buffaloes in historically bTB-free herds. In this study, the specificities of three assays were determined using M. bovis-unexposed herds, historically negative, and a high-specificity diagnostic algorithm was developed. Serial test interpretation (positive on both) using the IGRA and IPRA showed significantly greater specificity (98.3%) than individual (90.4% and 80.9%, respectively) tests or parallel testing (73%). When the SCITT was added, the algorithm had 100% specificity. Since the cytokine assays had imperfect specificity, potential cross-reactivity with nontuberculous mycobacteria (NTM) was investigated. No association was found between NTM presence (in oronasal swab cultures) and positive cytokine assay results. As a proof-of-principle, serial testing was applied to buffaloes (n = 153) in a historically bTB-free herd. Buffaloes positive on a single test (n = 28) were regarded as test-negative. Four buffaloes were positive on IGRA and IPRA, and M. bovis infection was confirmed by culture. These results demonstrate the value of using IGRA and IPRA in series to screen buffalo herds with no previous history of M. bovis infection.

14.
Vet Immunol Immunopathol ; 252: 110485, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36113392

RESUMEN

Ante-mortem surveillance for Mycobacterium bovis (M. bovis) infection in the Kruger National Park (KNP) rhinoceros population currently relies on results from the QuantiFERON-TB Gold (In-Tube) Plus (QFT)-interferon gamma (IFN-γ) release assay (IGRA). However, same-day processing of rhinoceros blood samples for this test is a logistical challenge. Therefore, a pilot study was performed to compare mitogen-stimulated and unstimulated IFN-γ concentrations in plasma from rhinoceros whole blood processed within 6 h of collection or stored at 4°C for 24 and 48 h prior to incubation in QFT tubes. Replicate samples of heparinized whole blood from seven subadult male white rhinoceros were used. Results showed no change in IFN-γ levels in unstimulated samples, however the relative concentrations of IFN-γ (based on optical density values) in mitogen plasma decreased significantly with increased time blood was stored post-collection and prior to QFT stimulation. These findings support a need for same-day processing of rhinoceros blood samples for QFT-IGRA testing as per the current practice. Further investigation using TB-antigen stimulated samples is warranted to properly assess the impact of blood storage on TB test results in rhinoceros.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Interferón gamma , Ensayos de Liberación de Interferón gamma/veterinaria , Masculino , Mitógenos , Perisodáctilos , Proyectos Piloto , Tuberculosis/diagnóstico , Tuberculosis/veterinaria
15.
Vet Immunol Immunopathol ; 252: 110486, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116328

RESUMEN

In South Africa, animal tuberculosis (TB) control programs predominantly focus on domestic cattle and African buffaloes (Syncerus caffer) despite increasing global reports of tuberculosis in goats (Capra hircus). Left undetected, Mycobacterium tuberculosis complex (MTBC) infected goats may hinder TB eradication efforts in cattle and increase zoonotic risk to humans. Since the publication of animal TB testing guidelines in 2018, prescribing the use of the tuberculin skin test (TST) for goats in South Africa by the Department of Agriculture, Land Reform, and Rural Development (DALRRD), there have been no published reports of any field application of the prescribed test criteria in goat herds. Therefore, this study aimed to evaluate the performance of these DALRRD guidelines using the single intradermal cervical tuberculin test (SICT) and the single intradermal comparative cervical tuberculin test (SICCT). Between October and December 2020, 495 goats from communal pastures of Kwa-Zulu Natal (KZN), where M. bovis infection has been identified in cattle and where cattle and goats cohabitate, were tested using the SICT and SICCT (M. bovis-exposed group). Additionally, 277 goats from a commercial Saanen dairy herd, with no history of M. bovis, were also tested (M. bovis-unexposed group). Estimated apparent prevalence of TST positive goats was determined based on published test interpretation criteria as described by DALRRD. When proportions of test-positive goats were compared between different DALRRD criteria, the ≥ 4 mm cut-off criterion for the SICCT resulted in the lowest proportion of positive results in the presumably uninfected group (1/277 positive in the unexposed group). The apparent prevalence of TB in the exposed group was estimated at 3.0% (95% CI: 1.7-4.9%), which is similar to previous reports of M. bovis prevalence in cattle from this area (6%). The detection of a significantly greater proportion of SICCT positive goats in the M. bovis-exposed group compared to the unexposed group suggests that MTBC infection is present in this population. Further investigations should be undertaken, in conjunction with confirmatory molecular tests, mycobacterial culture, and advanced pathogen sequencing to establish whether MTBC infection in domestic goats is a true under-recognized threat to the eradication of animal TB in South Africa.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de las Cabras , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Bovina , Tuberculosis , Animales , Búfalos , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/microbiología , Cabras , Humanos , Sudáfrica/epidemiología , Tuberculina , Prueba de Tuberculina/métodos , Prueba de Tuberculina/veterinaria , Tuberculosis/diagnóstico , Tuberculosis/epidemiología , Tuberculosis/veterinaria , Tuberculosis Bovina/diagnóstico , Tuberculosis Bovina/epidemiología
16.
Microorganisms ; 10(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144447

RESUMEN

Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.

17.
Microorganisms ; 10(9)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36144463

RESUMEN

Diagnosis of bovine tuberculosis (bTB) may be confounded by immunological cross-reactivity to Mycobacterium bovis antigens when animals are sensitised by certain nontuberculous mycobacteria (NTMs). Therefore, this study aimed to investigate NTM species diversity in African buffalo (Syncerus caffer) respiratory secretions and tissue samples, using a combination of novel molecular tools. Oronasal swabs were collected opportunistically from 120 immobilised buffaloes in historically bTB-free herds. In addition, bronchoalveolar lavage fluid (BALF; n = 10) and tissue samples (n = 19) were obtained during post-mortem examination. Mycobacterial species were identified directly from oronasal swab samples using the Xpert MTB/RIF Ultra qPCR (14/120 positive) and GenoType CMdirect (104/120 positive). In addition, all samples underwent mycobacterial culture, and PCRs targeting hsp65 and rpoB were performed. Overall, 55 NTM species were identified in 36 mycobacterial culture-positive swab samples with presence of esat-6 or cfp-10 detected in 20 of 36 isolates. The predominant species were M. avium complex and M. komanii. Nontuberculous mycobacteria were also isolated from 6 of 10 culture-positive BALF and 4 of 19 culture-positive tissue samples. Our findings demonstrate that there is a high diversity of NTMs present in buffaloes, and further investigation should determine their role in confounding bTB diagnosis in this species.

18.
Pathogens ; 11(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35890010

RESUMEN

Mycobacterium bovis (M. bovis) infection in wildlife, including lions (Panthera leo), has implications for individual and population health. Tools for the detection of infected lions are needed for diagnosis and disease surveillance. This study aimed to evaluate the Mabtech Cat interferon gamma (IFN-γ) ELISABasic kit for detection of native lion IFN-γ in whole blood samples stimulated using the QuantiFERON® TB Gold Plus (QFT) platform as a potential diagnostic assay. The ELISA was able to detect lion IFN-γ in mitogen-stimulated samples, with good parallelism, linearity, and a working range of 15.6-500 pg/mL. Minimal matrix interference was observed in the recovery of domestic cat rIFN-γ in lion plasma. Both intra- and inter-assay reproducibility had a coefficient of variation less than 10%, while the limit of detection and quantification were 7.8 pg/mL and 31.2 pg/mL, respectively. The diagnostic performance of the QFT Mabtech Cat interferon gamma release assay (IGRA) was determined using mycobacterial antigen-stimulated samples from M. bovis culture-confirmed infected (n = 8) and uninfected (n = 4) lions. A lion-specific cut-off value (33 pg/mL) was calculated, and the sensitivity and specificity were determined to be 87.5% and 100%, respectively. Although additional samples should be tested, the QFT Mabtech Cat IGRA could identify M. bovis-infected African lions.

19.
Proc Natl Acad Sci U S A ; 119(24): e2120656119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666877

RESUMEN

Mycobacterium bovis infection, which is a prominent cause of bovine tuberculosis, has been confirmed by mycobacterial culture in African rhinoceros species in Kruger National Park (KNP), South Africa. In this population-based study of the epidemiology of M. bovis in 437 African rhinoceros (Diceros bicornis, Ceratotherium simum), we report an estimated prevalence of 15.4% (95% CI: 10.4 to 21.0%), based on results from mycobacterial culture and an antigen-specific interferon gamma release assay from animals sampled between 2016 and 2020. A significant spatial cluster of cases was detected near the southwestern park border, although infection was widely distributed. Multivariable logistic regression models, including demographic and spatiotemporal variables, showed a significant, increasing probability of M. bovis infection in white rhinoceros based on increased numbers of African buffalo (Syncerus caffer) herds in the vicinity of the rhinoceros sampling location. Since African buffaloes are important maintenance hosts for M. bovis in KNP, spillover of infection from these hosts to white rhinoceros sharing the environment is suspected. There was also a significantly higher proportion of M. bovis infection in black rhinoceros in the early years of the study (2016­2018) than in 2019 and 2020, which coincided with periods of intense drought, although other temporal factors could be implicated. Species of rhinoceros, age, and sex were not identified as risk factors for M. bovis infection. These study findings provide a foundation for further epidemiological investigation of M. bovis, a multihost pathogen, in a complex ecosystem that includes susceptible species that are threatened and endangered.


Asunto(s)
Mycobacterium bovis , Perisodáctilos , Tuberculosis , Animales , Ecosistema , Parques Recreativos , Perisodáctilos/microbiología , Factores de Riesgo , Sudáfrica/epidemiología , Tuberculosis/veterinaria
20.
Pathogens ; 11(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745564

RESUMEN

Since certain Mycobacterium tuberculosis complex (MTBC) members, such as M. bovis, are endemic in specific South African wildlife reserves and zoos, cases of clinically important nontuberculous mycobacteria (NTM) in wildlife may be neglected. Additionally, due to the inability of tests to differentiate between the host responses to MTBC and NTM, the diagnosis of MTBC may be confounded by the presence of NTMs. This may hinder control efforts. These constraints highlight the need for enhanced rapid detection and differentiation methods for MTBC and NTM, especially in high MTBC burden areas. We evaluated the use of the GeneXpert MTB/RIF Ultra, the Hain CMdirect V1.0 line probe assay, and novel amplicon sequencing PCRs targeting the mycobacterial rpoB and ku gene targets, directly on antemortem African elephant (n = 26) bronchoalveolar lavage fluid (BALF) (n = 22) and trunk washes (n = 21) and rhinoceros (n = 23) BALF (n = 23), with known MTBC culture-positive and NTM culture-positive results. Our findings suggest that the Ultra is the most sensitive diagnostic test for MTBC DNA detection directly in raw antemortem respiratory specimens and that the rpoB PCR is ideal for Mycobacterium genus DNA detection and species identification through amplicon sequencing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA