Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L229-L244, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307313

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants that is characterized by interrupted lung development. Postnatal sepsis causes BPD, yet the contributory mechanisms are unclear. To address this gap, studies have used lipopolysaccharide (LPS) during the alveolar phase of lung development. However, the lungs of infants who develop BPD are still in the saccular phase of development, and the effects of LPS during this phase are poorly characterized. We hypothesized that chronic LPS exposure during the saccular phase disrupts lung development by mechanisms that promote inflammation and prevent optimal lung development and repair. Wild-type C57BL6J mice were intraperitoneally administered 3, 6, or 10 mg/kg of LPS or a vehicle once daily on postnatal days (PNDs) 3-5. The lungs were collected for proteomic and genomic analyses and flow cytometric detection on PND6. The impact of LPS on lung development, cell proliferation, and apoptosis was determined on PND7. Finally, we determined differences in the LPS effects between the saccular and alveolar lungs. LPS decreased the survival and growth rate and lung development in a dose-dependent manner. These effects were associated with a decreased expression of proteins regulating cell proliferation and differentiation and increased expression of those mediating inflammation. While the lung macrophage population of LPS-treated mice increased, the T-regulatory cell population decreased. Furthermore, LPS-induced inflammatory and apoptotic response and interruption of cell proliferation and alveolarization was greater in alveolar than in saccular lungs. Collectively, the data support our hypothesis and reveal several potential therapeutic targets for sepsis-mediated BPD in infants.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Lipopolisacáridos/toxicidad , Alveolos Pulmonares/crecimiento & desarrollo , Linfocitos T Reguladores/metabolismo , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta a Droga , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Linfocitos T Reguladores/patología
2.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L734-L741, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30047283

RESUMEN

Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, is associated with long-term morbidities, including pulmonary hypertension (PH). Importantly, hyperoxia causes BPD and PH; however, the underlying mechanisms remain unclear. Herein, we performed high-throughput transcriptomic and proteomic studies using a clinically relevant murine model of BPD with PH. Neonatal wild-type C57BL6J mice were exposed to 21% oxygen (normoxia) or 70% oxygen (hyperoxia) during postnatal days (PNDs) 1-7. Lung tissues were collected for proteomic and genomic analyses on PND 7, and selected genes and proteins were validated by real-time quantitative PCR and immunoblotting analysis, respectively. Hyperoxia exposure dysregulated the expression of 344 genes and 21 proteins. Interestingly, hyperoxia downregulated genes involved in neuronal development and maturation in lung tissues. Gene set enrichment and gene ontology analyses identified apoptosis, oxidoreductase activity, plasma membrane integrity, organ development, angiogenesis, cell proliferation, and mitophagy as the predominant processes affected by hyperoxia. Furthermore, selected deregulated proteins strongly correlated with the expression of specific genes. Collectively, our results identified several potential therapeutic targets for hyperoxia-mediated BPD and PH in infants.


Asunto(s)
Biomarcadores/análisis , Displasia Broncopulmonar/patología , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Proteoma/análisis , Transcriptoma , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Mol Cancer ; 9: 140, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20529378

RESUMEN

BACKGROUND: Although the incidence of melanoma in the U.S. is rising faster than any other cancer, the FDA-approved chemotherapies lack efficacy for advanced disease, which results in poor overall survival. Lysophosphatidic acid (LPA), autotaxin (ATX), the enzyme that produces LPA, and the LPA receptors represent an emerging group of therapeutic targets in cancer, although it is not known which of these is most effective. RESULTS: Herein we demonstrate that thio-ccPA 18:1, a stabilized phosphonothionate analogue of carba cyclic phosphatidic acid, ATX inhibitor and LPA1/3 receptor antagonist, induced a marked reduction in the viability of B16F10 metastatic melanoma cells compared with PBS-treated control by 80-100%. Exogenous LPA 18:1 or D-sn-1-O-oleoyl-2-O-methylglyceryl-3-phosphothioate did not reverse the effect of thio-ccPA 18:1. The reduction in viability mediated by thio-ccPA 18:1 was also observed in A375 and MeWo melanoma cell lines, suggesting that the effects are generalizable. Interestingly, siRNA to LPA3 (siLPA3) but not other LPA receptors recapitulated the effects of thio-ccPA 18:1 on viability, suggesting that inhibition of the LPA3 receptor is an important dualistic function of the compound. In addition, siLPA3 reduced proliferation, plasma membrane integrity and altered morphology of A375 cells. Another experimental compound designed to antagonize the LPA1/3 receptors significantly reduced viability in MeWo cells, which predominantly express the LPA3 receptor. CONCLUSIONS: Thus the ability of thio-ccPA 18:1 to inhibit the LPA3 receptor and ATX are key to its molecular mechanism, particularly in melanoma cells that predominantly express the LPA3 receptor. These observations necessitate further exploration and exploitation of these targets in melanoma.


Asunto(s)
Antineoplásicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Ácidos Fosfatidicos/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Expresión Génica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Complejos Multienzimáticos/antagonistas & inhibidores , Fosfodiesterasa I/antagonistas & inhibidores , Hidrolasas Diéster Fosfóricas , Pirofosfatasas/antagonistas & inhibidores , ARN Interferente Pequeño , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...