Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949746

RESUMEN

Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.

2.
J Liposome Res ; : 1-18, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591935

RESUMEN

The clinical use of selegiline hydrochloride in conventional dosage forms is to reduce the progression of Parkinson's disease (PD). However, its limited access to the brain, short half-life, and first-pass metabolism minimize brain uptake. Nano-based liposomes offer promising tools for brain-targeted delivery of therapeutics, especially intranasally administered cationic liposomes that target the brain region via the olfactory route and reduce biodistribution. In the present work, cationic liposomes encapsulated with selegiline hydrochloride were fabricated for intranasal administration against PD. The liposomes were initially optimized by Box Behnken design, and the selected run was coated with stearylamine to provide a cationic charge to the liposomes. The final coated liposomes, SH-LP3, demonstrated a minimum size of 173 ± 2.13 nm, an ideal zeta potential of +16 ± 1.98, and achieved a maximum entrapment efficiency of 40.14 ± 1.83%. Morphology analysis showed the spherical shape of liposomes in the size range of 100-200 nm. The in vitro cytotoxicity assay in SHSY5Y cell lines showed a significant decrease in toxicity, almost ten times less, compared to pure selegiline hydrochloride. Animal studies on rotenone-lesioned C57BL6 mice model for PD were performed to investigate the effect of intranasally administered liposomes. The SH-LP3 formulation exhibited remarkable effectiveness in relieving symptoms of PD. This extensive analysis emphasizes the possibility of intranasally administered SH-LP3 liposomes as a feasible treatment option for PD. The formulation not only delivers continuous drug release but also displays better safety and efficacy, providing a platform for additional studies and growth in the domain of PD treatment.

3.
Colloids Surf B Biointerfaces ; 229: 113470, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499545

RESUMEN

Tissue engineering has gained prominence during the past decade since it offers a key solution to defects associated with the tissue regeneration. The limited healing potential of the cartilage tissue damage has significant clinical implications. Herein, dysprosium (Dy3+) impregnated polyvinyl alcohol (PVA) hydrogels have been developed to enhance the therapeutic efficacy, enabling simultaneous diagnostic imaging and antibacterial drug delivery for potential applications in articular cartilage. Based on the favorable imaging features, Dy3+ impregnated PVA hydrogels with enhanced stability were formed through successive steps of repeated cycles of freezing at - 30 °C for 21 h, thawing at 25 °C for 4 h and lyophilization. The tensile and compression tests of the hydrogels respectively determined a maximum of 3.88 and 1.58 MPa, which reflected better compatibility towards cartilage. The hydrogels fetched a sustained drug release for a period of 12 h with an associated swelling ratio of 80%. The potential of the resultant hydrogels in image diagnosis has been deliberated through their blue and yellow emissions in the visible region. Further, the computed tomography (CT) and magnetic resonance imaging characteristics of the hydrogels respectively accomplished a maximum of 343 Hounsfiled units (HU) and relaxivity of 7.25 mM-1s-1. The cytocompatibility of the hydrogels is also determined through in vitro tests performed in Murine pro B cell line (BA/F3) and human Megakaryocyte cell line (Mo7e) cell lines.


Asunto(s)
Cartílago Articular , Alcohol Polivinílico , Ratones , Humanos , Animales , Disprosio , Hidrogeles
4.
Int J Biol Macromol ; 244: 125374, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37330096

RESUMEN

Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.


Asunto(s)
Quitosano , Piel , Humanos , Administración Cutánea , Ácido Hialurónico , Celulosa , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos
5.
Ageing Res Rev ; 83: 101806, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427765

RESUMEN

Neurodegenerative diseases are the most widely affected disease condition in an aging population. The treatment available reduces the elevated manifestations but is ineffective due to the drug's poor bioavailability, plasma stability, and permeability across the blood-brain barrier (BBB). Until now, no therapeutic compound has been able to stop the progression of neurodegenerative disease. Even the available therapeutic moiety manages it with possible adverse effects up to the later stage. Hence, phytobioactive compounds of plant origin offer effective treatment strategies against neurodegenerative diseases. The only difficulty of these phytobioactive compounds is permeability across the BBB. Engineered nanocarriers such as liposomes provide high lipid permeability across BBB. Liposomes have unique physicochemical properties that are widely investigated for their application in diagnosing and treating neurodegenerative diseases. The surface modification on liposomes by peptides, antibodies, and RNA aptamers offers receptor targeting. These brain-targeted approaches by liposomes improve the efficacy of phytoconstituents. Additional surface modification methods are utilized on liposomes, which increases the brain-targeted delivery of phytobioactive compounds. The marketing strategy of the liposomal delivery system is in its peak mode, where it has the potential to modify the existing therapy. This review will summarize the brain target liposomal delivery of phytobioactive compounds as a novel disease-modifying agent for treating neurodegenerative diseases.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Anciano , Liposomas/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanopartículas/uso terapéutico , Barrera Hematoencefálica
6.
Front Oncol ; 12: 994155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330493

RESUMEN

Numerous naturally available phytochemicals have potential anti-cancer activities due to their vast structural diversity. Alkaloids have been extensively used in cancer treatment, especially lung cancers, among the plant-based compounds. However, their utilization is limited by their poor solubility, low bioavailability, and inadequacies such as lack of specificity to cancer cells and indiscriminate distribution in the tissues. Incorporating the alkaloids into nanoformulations can overcome the said limitations paving the way for effective delivery of the alkaloids to the site of action in sufficient concentrations, which is crucial in tumor targeting. Our review attempts to assess whether alkaloid nanoformulation can be an effective tool in lung cancer therapy. The mechanism of action of each alkaloid having potential is explored in great detail in the review. In general, Alkaloids suppress oncogenesis by modulating several signaling pathways involved in multiplication, cell cycle, and metastasis, making them significant component of many clinical anti-cancerous agents. The review also explores the future prospects of alkaloid nanoformulation in lung cancer. So, in conclusion, alkaloid based nanoformulation will emerge as a potential gamechanger in treating lung cancer in the near future.

8.
Curr Neuropharmacol ; 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36237157

RESUMEN

Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND and increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. Drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micron-sized drug delivery needles that are self-administrable. They can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for phytobioactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.

9.
Nat Commun ; 13(1): 6443, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307418

RESUMEN

Neuraminidase (NA) of human influenza H3N2 virus has evolved rapidly and been accumulating mutations for more than half-century. However, biophysical constraints that govern the evolutionary trajectories of NA remain largely elusive. Here, we show that among 70 natural mutations that are present in the NA of a recent human H3N2 strain, >10% are deleterious for an ancestral strain. By mapping the permissive mutations using combinatorial mutagenesis and next-generation sequencing, an extensive epistatic network is revealed. Biophysical and structural analyses further demonstrate that certain epistatic interactions can be explained by non-additive stability effect, which in turn modulates membrane trafficking and enzymatic activity of NA. Additionally, our results suggest that other biophysical mechanisms also contribute to epistasis in NA evolution. Overall, these findings not only provide mechanistic insights into the evolution of human influenza NA and elucidate its sequence-structure-function relationship, but also have important implications for the development of next-generation influenza vaccines.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Neuraminidasa , Gripe Humana/epidemiología , Subtipo H3N2 del Virus de la Influenza A/genética , Prevalencia
11.
ACS Omega ; 7(33): 29246-29255, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36033676

RESUMEN

Functionally graded materials (FGMs) composed of a polymer matrix embedded with calcium phosphate particles are preferred for bone tissue engineering, as they can mimic the hierarchical and gradient structure of bones. In this study, we report the design and development of a FGM based on thiolated poly(vinyl alcohol) (TPVA) and nano-hydroxyapatite (nano-HA) with graded bioactivity, cell compatibility, and degradability properties that are conducive for bone regeneration. The polymer matrix comprises crosslinked poly(vinyl alcohol) with ester and thioether linkages formed via the thiol-ene click reaction, avoiding undesired additives and byproducts. Freshly precipitated and spray-dried HA was mixed with the TPVA hydrogel, and layers of varying concentrations were cast. Upon lyophilization, the hydrogel structure yielded porous sheets of the graded composite of TPVA and nano-HA. The new FGM showed higher values of tensile strength and degradation in phosphate buffer saline (PBS) in vitro, compared to bare TPVA. The bioactive nature of the FGM was confirmed through bioactivity studies in simulated body fluid (SBF), while cytocompatibility was demonstrated with human periodontal ligament cells in vitro. Cumulatively, our results indicate that based on the composition, mechanical properties, bioactivity, and cytocompatibility, the fabricated TPVA-HA composites can find potential use as guided bone regeneration (GBR) membranes.

12.
Bioinorg Chem Appl ; 2022: 9150205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992047

RESUMEN

The demand for drug delivery systems (DDS) to treat Parkinson's disease (PD) is still high, and microneedle (MN) assisted transdermal DDS offers enormous potential. Herbal products for PD have been shown to have antioxidant effects in reducing dopaminergic neurons from degeneration. Here, we attempted to incorporate solid lipid nanoparticles (SLNs) of Bacopa monnieri into dissolvable microneedle arrays and evaluate its neuroprotective activity. The bloodless and painless microneedle arrays through the transdermal route deliver the drug across the blood-brain barrier at the desired concentration. The quality by design (QbD) approach was employed for optimizing the SLNs formulations. The mechanical strength, in vitro release studies, ex-vivo permeation investigation, skin irritation test, histopathological studies, biochemical studies, and behavioural tests SLNs loaded microneedle arrays were performed. The microneedle patches obtained were shown to be mechanically robust and were also found to be nonirritant with a decreased degree of bradykinesia, high motor coordination, and balance ability. Compared to systemic delivery systems, such an MN method can achieve a considerably lower effective dose and allow long-term home-based treatment.

13.
Front Oncol ; 12: 925379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903701

RESUMEN

There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.

14.
Nucleic Acids Res ; 50(14): 8193-8206, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35876068

RESUMEN

The RNA recognition motif (RRM) occurs widely in RNA-binding proteins, but does not always by itself support full binding. For example, it is known that binding of SL1 RNA to the protein U1-70K in the U1 spliceosomal particle is reduced when a region flanking the RRM is truncated. How the RRM flanking regions that together with the RRM make up an 'extended RRM' (eRRM) contribute to complex stability and structural organization is unknown. We study the U1-70K eRRM bound to SL1 RNA by thermal dissociation and laser temperature jump kinetics; long-time molecular dynamics simulations interpret the experiments with atomistic resolution. Truncation of the helix flanking the RRM on its N-terminal side, 'N-helix,' strongly reduces overall binding, which is further weakened under higher salt and temperature conditions. Truncating the disordered region flanking the RRM on the C-terminal side, 'C-IDR', affects the local binding site. Surprisingly, all-atom simulations show that protein truncation enhances base stacking interactions in the binding site and leaves the overall number of hydrogen bonds intact. Instead, the flanking regions of the eRRM act in a distributed fashion via collective interactions with the RNA when external stresses such as temperature or high salt mimicking osmotic imbalance are applied.


Asunto(s)
Motivo de Reconocimiento de ARN , Ribonucleoproteína Nuclear Pequeña U1 , Empalmosomas , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo
15.
ACS Omega ; 6(38): 24826-24833, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34604664

RESUMEN

A radiopaque compound, namely, 4,4-bis(4-hydroxy-3,5-diiodophenyl)pentanoic acid, was synthesized by the electrophilic aromatic iodination of 4,4-bis(4-hydroxyphenyl)pentanoic acid using sodium iodide and sodium hypochlorite. The active iodines created by hypochlorite were selectively bound to the ortho positions of the diphenolic acid and obtained a tetraiodo compound. Characterization of this iodinated compound was accomplished by routine methods such as Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, energy-dispersive X-ray spectroscopy, mass spectroscopy, UV-Vis spectroscopy, and thermogravimetry. The iodine content in the compound was as high as 64% by weight and therefore expected to possess substantial radiopacity. A 5% solution of the compound in dimethyl sulfoxide exhibited radiopacity of 885 ± 7 Hounsfield Units when tested with computed tomography (CT) scanner. In vitro cytotoxicity test performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that the compound was noncytotoxic to L929 fibroblast cells up to the level of 0.8 mg/mL concentration. Overall results indicate that this highly radiopaque compound has the potential to be used for X-ray imaging in the clinical scenario.

16.
Biomacromolecules ; 22(11): 4470-4478, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34606244

RESUMEN

The solubility transition at the lower critical solution temperature (LCST, 32 °C) of poly(N-isopropylacrylamide) (PNIPAM) is widely used as a thermal switch to rapidly and reversibly capture and release proteins and cells. It is generally assumed that proteins adsorbed to PNIPAM above the LCST are unaffected by polymer interactions. Here we show that the folding stability of the enzyme phosphoglycerate kinase (PGK) is increased by interactions with end-grafted PNIPAM films above the LCST. We systematically compare two protein mutants with different stabilities. The stabilization mirrors the degree of protein adsorption under grafting conditions studied previously. Maximum stabilization occurs when proteins adsorb to low density, collapsed polymer "mushrooms". In the denser polymer "brush" regime, protein stabilization decreases back to a value indistinguishable from the bulk solution, consistent with low protein adsorption on dense, collapsed brushes. The temperature-dependent kinetics measured by Fast Relaxation Imaging reveals that PNIPAM does not affect the overall folding/unfolding mechanism. Based on the different stabilizations of two mutants and the relaxation kinetics, we hypothesize that the polymer acts mainly by increasing the conformational entropy of the folded protein by interacting with the protein surface and less by crowding the unfolded state of PGK.


Asunto(s)
Resinas Acrílicas , Polímeros , Cinética , Proteínas
17.
Curr Opin Struct Biol ; 66: 163-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33254078

RESUMEN

Theory, computation and experiment have matched up for the folding of small proteins in vitro, a difficult feat because folding energy landscapes are fairly smooth and free energy differences between states are small. Smoothness means that protein structure and folding are susceptible to the local environment inside living cells. Theory, computation and experiment are now exploring cellular modulation of energy landscapes. Interesting concepts have emerged, such as co-evolution of protein surfaces with their cellular environment to reduce detrimental interactions. Here we look at very recent work beginning to bring together theory, simulations and experiments in the area of protein landscape modulation, to see what problems might be solved in the near future by combining these approaches.


Asunto(s)
Pliegue de Proteína , Proteínas , Simulación por Computador , Modelos Moleculares , Termodinámica
18.
Chemistry ; 24(34): 8679-8685, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29630748

RESUMEN

The introduction of the trialkylsilylethynyl group to the acene core is known to predominantly transform the herringbone structure of pentacene to a slip-stacked packing. However, herein, the occurrence of an unforeseen polymorph of 6,13-bis(trimethylsilylethynyl)pentacene (TMS-pentacene), with an atypical γ-herringbone packing arrangement, is reported. Intermolecular noncovalent interactions in the γ-herringbone polymorph are determined from Hirshfeld surface and quantum theory of atoms-in-molecules (QTAIM) analyses. Furthermore, a comparative truncated symmetry-adapted perturbation theory (SAPT(0)) energy decomposition analysis discloses the role of exchange repulsions that govern molecular packing in the γ-herringbone polymorph. Moreover, the computationally predicted electronic coupling and anisotropic mobility reveal the possibility of enhanced hole transport (µh =3.7 cm2 V-1 s-1 ) in the γ-herringbone polymorph, in contrast to the reported polymorph with a hole mobility of µh =0.1 cm2 V-1 s-1 .

19.
Chem Commun (Camb) ; 53(53): 7409-7411, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28628164

RESUMEN

Side-chains at the imidic position of naphthalimide rendered a firm control over (i) the degrees of π-π overlap and (ii) distances between the perylenimide units in a crystalline naphthalimide-perylenimide dyad as determined using single crystal XRD and Hirshfeld surface analyses. Steady-state and time-resolved electronic spectroscopy in addition to DFT calculations revealed a decline in intermolecular excitonic interaction due to interfering alkyl chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...