Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34183, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100473

RESUMEN

Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.

2.
J Mol Recognit ; 37(3): e3076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366770

RESUMEN

Tetramethrin (TMT) is a commonly used insecticide and has a carcinogenic and neurodegenerative effect on humans. The binding mechanism and toxicological implications of TMT to human serum albumin (HSA) were examined in this study employing a combination of biophysical and computational methods indicating moderate binding affinity and potential hepato and renal toxicity. Fluorescence quenching experiments showed that TMT binds to HSA with a moderate affinity, and the binding process was spontaneous and predominantly enthalpy-driven. Circular dichroism spectroscopy revealed that TMT binding did not induce any significant conformational changes in HSA, resulting in no changes in its alpha-helix content. The binding site and modalities of TMT interactions with HSA as computed by molecular docking and molecular dynamics simulations revealed that it binds to Sudlow site II of HSA via hydrophobic interactions through its dimethylcyclopropane carboxylate methyl propanyl group. The structural dynamics of TMT induce proper fit into the binding site creating increased and stabilizing interactions. Additionally, molecular mechanics-Poisson Boltzmann surface area calculations also indicated that non-polar and van der Waals were found to be the major contributors to the high binding free energy of the complex. Quantum mechanics (QM) revealed the conformational energies of the binding confirmation and the degree of deviation from the global minimum energy conformation of TMT. The results of this study provide a comprehensive understanding of the binding mechanism of TMT with HSA, which is important for evaluating the toxicity of this insecticide in humans.


Asunto(s)
Insecticidas , Piretrinas , Humanos , Unión Proteica , Simulación del Acoplamiento Molecular , Insecticidas/toxicidad , Espectrometría de Fluorescencia , Albúmina Sérica Humana/química , Sitios de Unión , Termodinámica , Dicroismo Circular
3.
Comput Biol Chem ; 108: 107976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956472

RESUMEN

Tea, a widely consumed aromatic beverage, is often adulterated with dyes such as Bismarck brown Y (C.I. 21000) (BBY), Prussian blue, and Plumbago, which pose potential health risks. The objective of this study is to analyze how the food dye BBY interacts with serum protein, bovine serum albumin (BSA). This study investigated the BBY-BSA interaction at the molecular level. Fluorescence spectroscopy results showed that the quenching of BSA by BBY is carried out by dynamic quenching mechanism. The displacement assay and molecular docking studies revealed that BBY binds at the flavanone binding site of BSA with hydrophobic interactions. Circular Dichroism results indicate the structural stability of the protein upon BBY binding. Molecular dynamics simulations demonstrated the stability of the complex in a dynamic solvent system, and quantum mechanics calculations showed slight conformational changes of the diaminophenyl ring due to increased hydrophobic interaction. The energetics of gas phase optimized and stable MD structures of BBY indicated similar values which further confirmed that the conformational changes were minor, and it also exhibited a moderate binding with BSA as shown by the MM/PBSA results. This study enhances our understanding of the molecular-level interactions between BBY and BSA, emphasizing the critical role of hydrophobic interactions.


Asunto(s)
Proteínas Sanguíneas , Colorantes , Simulación del Acoplamiento Molecular , Sitios de Unión , Espectrometría de Fluorescencia , Proteínas Sanguíneas/metabolismo , , Unión Proteica , Termodinámica , Albúmina Sérica Bovina/química
4.
J Biomol Struct Dyn ; : 1-12, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261797

RESUMEN

Antibiotic-resistant Acinetobacter baumannii, is a common pathogen found in hospital settings and has become nosocomial due to its high infection-causing tendency amongst ICU patients. The present study explores the cyanocompoundswhich were capable to inhibit the Penicillin Binding Protein of A. baumannii through molecular docking, ADMET, and molecular dynamicssimulation strategy. A database having structural and origin details was generated for 85 bioactive compounds in MS Excel. The 3-D structures weredownloaded from the PubChem database and minimized. The receptor protein was minimized and validated for structure correctness. The database was screened against the penicillin-binding protein of A. baumannii through PyRx software. The top 5 compounds including the control molecule werefurther redocked to the receptor molecule through Autodock Vina software. The molecule pose having the highest affinity was further subjected to 100ns MD- simulation and simultaneously the in-vitro activity of the methanol extract and hexane extract was checked through agar well diffusion assay.Docking studies indicate Tolyporphine K to be a lead molecule which was further assessed through Molecular dynamics and MM/PBSA. The in-silicoresults suggested that the protein-ligand complex was found to be stable over the 100 ns trajectory with a binding free energy of -8.56 Kcalmol-1. Theligand did not induce any major structural conformation in the protein moiety and was largely stabilized by hydrophobic interactions. The bioactivityscore and ADME properties of the compounds were also calculated. The in-vitro agar well diffusion assay showed a moderate zone of inhibition of12.33mm. The results indicate that the compound Tolyporphin- K could be a potential inhibitor of penicillin-binding protein in A. baumannii. Yet furtherwork needs to be done to have a more concrete basis for the pathway of inhibition.Communicated by Ramaswamy H. Sarma.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122910, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257324

RESUMEN

Sertraline Hydrochloride (STH) is an antidepressant drug that belongs to the selective serotonin reuptake inhibitor family (SSRIs), which inhibits serotonin uptake in presynaptic nerve fibers. The use of these medications without a legitimate prescription might result in adverse effects, and in rare circumstances, death. The interaction mechanism and binding mode of STH with duplex DNA were extensively investigated using spectroscopic and modeling techniques at different temperatures. The hypochromic shift of the absorption spectra of STH on binding with CT-DNA indicated groove binding. Fluorescence spectroscopic studies showed that CT-DNA quenches the fluorescence intensity of STH through a static quenching mechanism. The thermodynamic parameters indicated that the complex formation was spontaneous, and enthalpy driven. The competitive displacement binding study revealed that STH displaced DAPI from the minor groove of DNA. Molecular docking and molecular dynamics simulations also revealed that the complex was stable over 150 ns and that STH preferred the minor groove of DNA. The binding energy of the stable conformations were evaluated through MM/PBSA methods. A comparison of the bound poses at different timescales showed minor changes in STH structure upon DNA binding. Furthermore, a structural analysis of CT-DNA indicated that STH induced changes in the sugar-phosphate backbone had an impact on the minor groove's width which are in agreement with the CD spectroscopic results. This study provides a better understanding of STH binding with duplex DNA.


Asunto(s)
ADN , Sertralina , Simulación del Acoplamiento Molecular , ADN/química , Espectrometría de Fluorescencia , Termodinámica , Tomografía Computarizada por Rayos X , Dicroismo Circular , Sitios de Unión
6.
J Biomol Struct Dyn ; 41(20): 10944-10956, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36841618

RESUMEN

Two phytochemicals, thymol and thymoquinone obtained from thymes (Thymus vulgaris L., Lamiaceae etc.) and Nagila Sativa seed, respectively. Both the phytochemicals show several biochemical activities like anticancer, antimicrobial etc. In this paper, we studied the affinities of thymol and thymoquinone towards calf thymus DNA (CT-DNA) and protein (bovine serum albumin). Spectroscopic and molecular modelling studies revealed that both compounds have a high affinity toward both the receptors; DNA and protein. Both phytochemicals binds to the minor grooves of DNA and suitable pockets of protein. Several free energy function and hydrogen bonding play significant role during the binding phenomenon.Communicated by Ramaswamy H. Sarma.


Asunto(s)
ADN , Timol , Unión Proteica , Timol/farmacología , Timol/química , Timol/metabolismo , Simulación del Acoplamiento Molecular , ADN/química , Albúmina Sérica Bovina/química , Sitios de Unión , Espectrometría de Fluorescencia/métodos
7.
J Biomol Struct Dyn ; 41(14): 6518-6533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35938696

RESUMEN

Some of the SARS-CoV-2 variants are said to be more infectious than the previous others and are causing panic around the globe. Cases related to Delta plus (δ+) and omicron (ο) variants are on the rise worldwide. This sudden surge warrants an investigation into the reasons for its binding with ACE-2. The present study attempts to find out the structural basis of binding interactions of SARS-CoV-2 mutants based on computational modeling and comparative analysis. In silico strategies including protein-protein docking, mutation analysis, molecular dynamics, and binding energy calculations were used to study the binding of the 'receptor binding domain' (RBD) of the seven 'variants of concern' which include Alpha (α), Beta (ß), Gamma (γ), Kappa (κ), Delta (δ), Delta plus (δ+) and omicron (ο) with ACE-2 (human angiotensin-converting enzyme-2) and with antibodies. Among all the variants dealt with in this study, Delta plus and omicron were found to be binding more strongly to ACE-2 than others due to inherent mutations and the consequent change in the hydrophilic and hydrophobic environment of the binding site. Furthermore, molecular dynamic (MD) simulations and subsequent MM/PBSA calculations provided useful structural insights into key residues participating in the interaction. Infectivity of a virus could be dependent on the interplay of evading antibodies and simultaneously attaching strongly with the host receptor. A cross-correlation between mutant spike proteins' binding with ACE-2 and antibodies provides a holistic assessment of the binding nature of these mutants vis-à-vis native virus and offers opportunities for designing potential therapeutics against these new mutants.Communicated by Ramaswamy H. Sarma.

8.
J Mol Recognit ; 35(12): e2989, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054496

RESUMEN

Structural information about drug-receptor interactions is paramount in drug discovery and subsequent optimization processes. Drugs can bind to multiple potential targets as they contain common chemical entities in their structures. Understanding the details of such interactions offer possibilities for repurposing and developing potent inhibitors of disease pathways. Vinblastine (VLB) is a potent anticancer molecule showing multiple receptor interactions with different affinities and degrees of structural perturbations. We have investigated the multi-target binding profile of VLB with DNA and human serum albumin (HSA) in a dynamic physiological environment using spectroscopic, molecular dynamics simulations, and quantum mechanical calculations to evaluate the structural features, mode, ligand and receptor flexibility, and energetics of complexation. These results confirm that VLB prefers to bind in the major groove of DNA with some inclination toward Thymidine residue and the TR-5 binding site in HSA with its catharanthine half making important contacts with both the receptors. Spectroscopic investigation at multiple temperatures has also proved that VLB binding is entropy driven indicating the major groove and TR-5 binding site of interaction. Finally, the overall binding is facilitated by van der Waals contacts and a few conventional H-bonds. VLB portrays reasonable conformational diversity on binding with multiple receptors.


Asunto(s)
Albúmina Sérica Humana , Vinblastina , Humanos , Vinblastina/química , Vinblastina/farmacología , Simulación del Acoplamiento Molecular , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica , Albúmina Sérica Humana/química , Sitios de Unión , ADN/química , Dicroismo Circular
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121618, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35853255

RESUMEN

Formetanate Hydrochloride (FMT), a highly potent chemical, acts as an insecticide, acaricide, and miticide to protect various fruits and vegetables. The widespread use elevates concern about its presence in the ecosystem, impact upon human health via interaction with biological receptors. Spectroscopic and molecular modeling techniques at different temperatures were used to investigate the binding of FMT with Human serum albumin (HSA) at the molecular level. The experimental and computational results have provided the binding affinity, binding mode, conformational flexibility, and thermodynamic profile of FMT-HSA complex. The FMT binding appears to be spontaneous, and entropy driven. Overall binding affinity of FMT falls within -7.29 to -4.67 Kcal M-1. FMT binds in domain I, subdomain IA of HSA and is stabilized by hydrophobic interactions. Molecular dynamics simulations of the FMT-HSA complex over 100 ns at 288 K, 298 K and 308 K indicated that FMT showed minor adjustments in conformation and placement within the binding site. While, MM/PBSA analysis of the complex provided individual contributions of energy terms. Quantum mechanical (QM) calculations were used to calculate absolute energy values of different poses of FMT which in turn showed minor variations in energy suggesting slight conformational variation in the bound form. The computational results are in agreement with experimental findings.


Asunto(s)
Ecosistema , Albúmina Sérica Humana , Sitios de Unión , Carbamatos , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA