Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fundam Clin Pharmacol ; 38(3): 489-501, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38311344

RESUMEN

BACKGROUND: The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE: The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION: The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.


Asunto(s)
Angiotensina I , Daño por Reperfusión Miocárdica , Fragmentos de Péptidos , Transducción de Señal , Angiotensina I/farmacología , Fragmentos de Péptidos/farmacología , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Animales , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Remodelación Ventricular/efectos de los fármacos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Apoptosis/efectos de los fármacos
2.
Biomedicines ; 11(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37509526

RESUMEN

An analysis of published data and the results of our own studies reveal that the activation of a peripheral δ2-opioid receptor (δ2-OR) increases the cardiac tolerance to reperfusion. It has been found that this δ2-OR is localized in cardiomyocytes. Endogenous opioids are not involved in the regulation of cardiac resistance to reperfusion. The infarct-limiting effect of the δ2-OR agonist deltorphin II depends on the activation of several protein kinases, including PKCδ, ERK1/2, PI3K, and PKG. Hypothetical end-effectors of the cardioprotective effect of deltorphin II are the sarcolemmal KATP channels and the MPT pore.

3.
Biomedicines ; 10(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36009601

RESUMEN

Purpose. This work investigates the relations between the production of reactive oxygen species (ROS) by epicardial adipose tissue (EAT) adipocytes and parameters of glucose/insulin metabolism, circulating adipokines levels, and severity of coronary atherosclerosis in patients with coronary artery disease (CAD); establishing significant determinants describing changes in ROS EAT in this category of patients. Material and methods. This study included 19 patients (14 men and 5 women, 53−72 y.o., 6 patients with diabetes mellitus type 2; 5 patients with prediabetes), with CAD, who underwent coronary artery bypass graft surgery. EAT adipocytes were isolated by the enzymatic method from intraoperative explants obtained during coronary artery bypass grafting. The size of EAT adipocytes and ROS level were determined. Results. The production of ROS by EAT adipocytes demonstrated a direct correlation with the level of postprandial glycemia (rs = 0.62, p < 0.05), and an inverse correlation with serum adiponectin (rs = −0.50, p = 0.026), but not with general and abdominal obesity, EAT thickness, and dyslipidemia. Regression analysis demonstrated that the increase in ROS of EAT adipocytes occurs due to the interaction of the following factors: postprandial glycemia (ß = 0.95), postprandial insulin (ß = 0.24), and reduced serum adiponectin (ß = −0.20). EAT adipocytes in patients with diabetes and prediabetes manifested higher ROS production than in patients with normoglycemia. Although there was no correlation between the production of ROS by EAT adipocytes and Gensini score in the total group of patients, higher rates of oxidative stress were observed in EAT adipocytes from patients with a Gensini score greater than median Gensini score values (≥70.55 points, Gr.B), compared to patients with less severe coronary atherosclerosis (<70.55 points, Gr.A). Of note, the frequency of patients with diabetes and prediabetes was higher among the patients with the most severe coronary atherosclerosis (Gr.B) than in the Gr.A. Conclusions. Our data have demonstrated for the first time that systemic impairments of glucose/insulin metabolism and a decrease in serum adiponectin are significant independent determinants of oxidative stress intensity in EAT adipocytes in patients with severe coronary atherosclerosis. The possible input of the interplay between oxidative stress in EAT adipocytes and metabolic disturbances to the severity of coronary atherosclerosis requires further investigation.

4.
Exp Gerontol ; 154: 111543, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34455071

RESUMEN

BACKGROUND: Age and diabetes are risk factors for arterial hypertension. However, the relationship between age, connective tissue growth factors, vascular aging and arterial hypertension while on a the high-carbohydrate high-fat diet (HCHFD) remains poorly understood. PURPOSE: To estimate the relationship between humoral factors, the morphological changes of aorta and impaired blood pressure regulation under the influence of age and a HCHFD. METHODS: A study was carried out in male Wistar rats, which were divided into the following groups: 1st (n = 15) - naive young rats; 2nd (n = 15) - young rats, exposed to HCHFD; 3rd (n = 14) - naive old rats; 4th (n = 12) - old rats exposed to HCHFD. The age of old rats was 540 days, and young rats 150 days at the end of the diet. HCHFD contained proteins 16%, fats 21%, carbohydrates 46%, including 17% fructose, 0.125% cholesterol, 90 days. Blood pressure and body weight were measured weekly, carbohydrate metabolism, histological signs of changes in the aorta, serum transforming growth factor-ß (TGF-ß), connective tissue growth factor (CTGF), fibronectin, and endothelin-1 levels were determined one week after the onset of diet. RESULTS: The severity of arterial hypertension and its histological signs in the aortic wall was found to be most pronounced in elderly rats kept on a HCHFD. In young rats kept on a HCHFD, arterial hypertension was transient. An increase in systolic blood pressure has a positive correlation with the degree of obesity, serum fibronectin, and endothelin-1 content, and impaired carbohydrate metabolism. The rise in diastolic blood pressure has a positive correlation with the serum CTGF, endothelin-1, fibronectin levels and aortic wall thickness, and impaired carbohydrate metabolism. A rise in the serum concentration of fibronectin was also associated with increased endothelin-1, TGFß and CTGF serum levels. CONCLUSION: This study indicated that an increase in blood pressure in old rats with a high-carbohydrate high-fat diet is due to a disturbance of a structure of the vascular wall, the release of fibronectin, which can occur under the influence of carbohydrate metabolism disorders, endothelin-1, TGFß and CTGF.


Asunto(s)
Dieta Alta en Grasa , Hipertensión , Animales , Aorta , Tejido Conectivo , Factor de Crecimiento del Tejido Conjuntivo , Dieta Alta en Grasa/efectos adversos , Fibronectinas , Fructosa , Hipertensión/etiología , Masculino , Ratas , Ratas Wistar
5.
Pflugers Arch ; 473(10): 1641-1655, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245378

RESUMEN

Takotsubo syndrome (TS) is a rare but dangerous disease that can be fatal. The pathogenesis of TS is not well understood because there is no animal model of TS that fully mimics TS. It has now been documented that stress exposure (24 h) of rats induced the state which is similar TS in human: contracture damage of myofibrils, elevation of the serum creatine kinase MB level, increased 99mTc-pyrophosphate (99mTc-PYP) accumulation in the heart, QTc interval prolongation, and contractility dysfunction of the heart. Immobilization stress resulted in an increase in coronary blood flow. Emotional stress increased the serum catecholamine level. Blockade of ß1-adrenergic receptor (AR) prevented stress-induced cardiac injury (SICI). Blockade of ß2-AR aggravated stress-induced cardiac injury. Stimulation of ß2-AR increased cardiac tolerance to stress. Inhibition of ß3-AR, α1-AR had no effect on SICI. Blockade of peripheral muscarinic receptors or α2-AR aggravated SICI. Pretreatment with the selective ß1-AR antagonist atenolol attenuates stress-induced cardiac contractility dysfunction, but recovery of cardiac contractility is not complete. There is indirect evidence that circulating catecholamines play an important role in SICI. Consequently, the activation of ß1-AR plays a significant role in SICI. However, there are other receptors which are also involved in SICI and require further investigation.


Asunto(s)
Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Receptores Adrenérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Estrés Fisiológico , Animales , Arginina/análogos & derivados , Arginina/sangre , Corticosterona/sangre , Femenino , Masculino , Péptido Natriurético Encefálico/sangre , Tamaño de los Órganos , Ratas , Ratas Wistar , Bazo/patología
6.
J Cardiovasc Pharmacol Ther ; 24(5): 403-421, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31035796

RESUMEN

A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase ß, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.


Asunto(s)
Precondicionamiento Isquémico , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Daño por Reperfusión/prevención & control , Transducción de Señal , Animales , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Flujo Sanguíneo Regional , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Resultado del Tratamiento
7.
Clin Exp Pharmacol Physiol ; 42(5): 496-501, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25739423

RESUMEN

Chronic continuous normobaric hypoxia (CNH) increases cardiac tolerance to acute ischaemia/reperfusion injury. The objective of this study was to find out whether the cardioprotective effect of CNH mediated by opioid receptors is associated with preservation of mitochondrial function. Rats were adapted to CNH (12% oxygen) for 3 weeks. Isolated perfused hearts were subjected to 45 min of global ischaemia and 30 min of reperfusion; subgroups were pretreated with non-selective opioid receptor antagonist naloxone (300 nmol/L) for 10 min. Cardiac contractile function, creatine kinase activity in coronary effluent, mitochondrial respiration rate, and calcium retention capacity were assessed. Adaptation to CNH decreased myocardial creatine kinase release during reperfusion and improved the post-ischaemic recovery of contractile function, mitochondrial state 3 and uncoupled respiration rates, and calcium retention capacity compared to the normoxic group. These protective effects were completely abolished by naloxone. The contractile recovery positively correlated with state 3 respiration and calcium retention capacity. The results suggest that the preserved mitochondrial function contributes to the protected cardiac phenotype afforded by adaptation to CNH and point to an important role of opioid receptor activation.


Asunto(s)
Hipoxia/patología , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/prevención & control , Receptores Opioides/metabolismo , Adaptación Fisiológica , Animales , Respiración de la Célula , Masculino , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Wistar , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...