Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Clin Endocrinol Metab ; 108(9): e779-e788, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36884306

RESUMEN

INTRODUCTION: Congenital hypothyroidism with gland-in-situ (CH-GIS) is usually attributed to mutations in the genes involved in thyroid hormone production. The diagnostic yield of targeted next-generation sequencing (NGS) varied widely between studies. We hypothesized that the molecular yield of targeted NGS would depend on the severity of CH. METHODS: Targeted NGS was performed in 103 CH-GIS patients from the French national screening program referred to the Reference Center for Rare Thyroid Diseases of Angers University Hospital. The custom targeted NGS panel contained 48 genes. Cases were classified as solved or probably solved depending on the known inheritance of the gene, the classification of the variants according to the American College of Medical Genetics and Genomics, the familial segregation, and published functional studies. Thyroid-stimulating hormone at CH screening and at diagnosis (TSHsc and TSHdg) and free T4 at diagnosis (FT4dg) were recorded. RESULTS: NGS identified 95 variants in 10 genes in 73 of the 103 patients, resulting in 25 solved cases and 18 probably solved cases. They were mainly due to mutations in the TG (n = 20) and TPO (n = 15) genes. The molecular yield was, respectively, 73% and 25% if TSHsc was ≥ and < 80 mUI/L, 60% and 30% if TSHdg was ≥ and < 100 mUI/L, and 69% and 29% if FT4dg was ≤ and > 5 pmol/L. CONCLUSION: NGS in patients with CH-GIS in France found a molecular explanation in 42% of the cases, increasing to 70% when TSHsc was ≥ 80 mUI/L or FT4dg was ≤ 5 pmol/L.


Asunto(s)
Hipotiroidismo Congénito , Humanos , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Mutación , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Front Cell Dev Biol ; 11: 1021920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926521

RESUMEN

Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.

3.
Life (Basel) ; 12(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36362876

RESUMEN

X-linked ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle defect. The disease severity ranges from asymptomatic carrier state to severe neonatal presentation with hyperammonaemic encephalopathy. We audited the diagnosis and management of OTCD, using an online 12-question-survey that was sent to 75 metabolic centres in Turkey, France and the UK. Thirty-nine centres responded and 495 patients were reported in total. A total of 208 French patients were reported, including 71 (34%) males, 86 (41%) symptomatic and 51 (25%) asymptomatic females. Eighty-five Turkish patients included 32 (38%) males, 39 (46%) symptomatic and 14 (16%) asymptomatic females. Out of the 202 UK patients, 66 (33%) were male, 83 (41%) asymptomatic and 53 (26%) symptomatic females. A total of 19%, 12% and 7% of the patients presented with a neonatal-onset phenotype in France, Turkey and the UK, respectively. Vomiting, altered mental status and encephalopathy were the most common initial symptoms in all three countries. While 69% in France and 79% in Turkey were receiving protein restriction, 42% were on a protein-restricted diet in the UK. A total of 76%, 47% and 33% of patients were treated with ammonia scavengers in Turkey, France and the UK, respectively. The findings of our audit emphasize the differences and similarities in manifestations and management practices in three countries.

4.
ERJ Open Res ; 8(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35141320

RESUMEN

Recommended respiratory tests used as major outcomes in clinical trials for MPS treatment cannot be routinely performed in everyday practice because neurocognitive impairment and motor skill difficulties affect compliance for most MPS patients https://bit.ly/3G4qp8U.

5.
Epilepsia ; 63(4): 974-991, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179230

RESUMEN

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Discapacidad Intelectual , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
6.
J Inherit Metab Dis ; 45(2): 215-222, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687058

RESUMEN

Liver disease, occurring during pediatric or adult age, is often of undetermined cause. Some cases are probably related to undiagnosed inherited metabolic disorders. Hepatic disorders associated with fructose-1,6-bisphosphatase deficiency, a gluconeogenesis defect, are not reported in the literature. These symptoms are mainly described during acute crises, and many reports do not mention them because hypoglycemia and hyperlactatemia are more frequently in the forefront. Herein, the liver manifestations of 18 patients affected with fructose-1,6-bisphosphatase deficiency are described and the corresponding literature is reviewed. Interestingly, all 18 patients had liver abnormalities either during follow-up (hepatomegaly [n = 8/18], elevation of transaminases [n = 6/15], bright liver [n = 7/11]) or during acute crises (hepatomegaly [n = 10/17], elevation of transaminases [n = 13/16], acute liver failure [n = 6/14], bright liver [n = 4/14]). Initial reports described cases of liver steatosis, when liver biopsy was necessary to confirm the diagnosis by an enzymatic study. There is no clear pathophysiological basis for this fatty liver disease but we postulate that endoplasmic reticulum stress and de novo lipogenesis activation could be key factors, as observed in FBP1 knockout mice. Liver steatosis may expose patients to severe long-term liver complications. As hypoglycemia becomes less frequent with age, most adult patients are no longer monitored by hepatologist. Signs of fructose-1,6-bisphosphatase deficiency may be subtle and can be missed in childhood. We suggest that fructose-1,6-bisphosphatase deficiency should be considered as an etiology of hepatic steatosis, and a liver monitoring protocol should be set up for these patients, during lifelong follow-up.


Asunto(s)
Hígado Graso , Deficiencia de Fructosa-1,6-Difosfatasa , Hipoglucemia , Animales , Estudios de Seguimiento , Fructosa , Deficiencia de Fructosa-1,6-Difosfatasa/complicaciones , Deficiencia de Fructosa-1,6-Difosfatasa/diagnóstico , Fructosa-Bifosfatasa/metabolismo , Hepatomegalia , Humanos , Hipoglucemia/complicaciones , Hígado/metabolismo , Ratones , Transaminasas
7.
Eur J Hum Genet ; 30(5): 567-576, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34782754

RESUMEN

Obtaining a rapid etiological diagnosis for infants with early-onset rare diseases remains a major challenge. These diseases often have a severe presentation and unknown prognosis, and the genetic causes are very heterogeneous. In a French hospital network, we assessed the feasibility of performing accelerated trio-genome sequencing (GS) with limited additional costs by integrating urgent requests into the routine workflow. In addition to evaluating our capacity for such an approach, this prospective multicentre pilot study was designed to identify pitfalls encountered during its implementation. Over 14 months, we included newborns and infants hospitalized in neonatal or paediatric intensive care units with probable genetic disease and in urgent need for etiological diagnosis to guide medical care. The duration of each step and the pitfalls were recorded. We analysed any deviation from the planned schedule and identified obstacles. Trio-GS was performed for 37 individuals, leading to a molecular diagnosis in 18/37 (49%), and 21/37 (57%) after reanalysis. Corrective measures and protocol adaptations resulted in a median duration of 42 days from blood sampling to report. Accelerated trio-GS is undeniably valuable for individuals in an urgent care context. Such a circuit should coexist with a rapid or ultra-rapid circuit, which, although more expensive, can be used in particularly urgent cases. The drop in GS costs should result in its generalized use for diagnostic purposes and lead to a reduction of the costs of rapid GS.


Asunto(s)
Hospitales , Unidades de Cuidados Intensivos , Niño , Estudios de Factibilidad , Humanos , Lactante , Recién Nacido , Proyectos Piloto , Estudios Prospectivos
8.
Med Sci (Paris) ; 37(5): 507-518, 2021 May.
Artículo en Francés | MEDLINE | ID: mdl-34003097

RESUMEN

Inborn Errors of Metabolism (IEM) are rare and heterogenous disorders. For most IEMs, clinical signs are non-specific or belated. Late diagnosis is frequent, leading to death or severe sequelae. Some IEM induce intermediate metabolites circulating in the blood. They may be detected by tandem mass spectrometry. This method allows the simultaneous detection of many IEM in different metabolic pathways. In France, newborn screening (NBS) program for IEM, limited to phenylketonuria for decades, has been recently extended to medium chain acyl-CoA dehydrogenase deficiency. Rationale, methodology and organization of this new NBS program are described. Seven other IEM (maple syrup urine disease, homocystinuria, tyrosinemia type I, glutaric aciduria type I, isovaleric acidemia, long chain hydroxy-acyl-CoA dehydrogenase deficiency, carnitine uptake disorder) should be screened in the next program extension. Efforts are needed to fully understand the predictive value of each abnormal testing at birth, decrease the false positive rate, and develop the adequate management strategies.


TITLE: Les nouvelles maladies héréditaires du métabolisme du programme français de dépistage néonatal. ABSTRACT: Les maladies héréditaires du métabolisme (MHM) sont un groupe de maladies rares et cliniquement hétérogènes. Le retard diagnostique est fréquent, conduisant souvent au décès du patient ou à de graves séquelles. Certaines MHM entraînent l'accumulation de métabolites intermédiaires circulant dans le sang, qui sont détectables par une méthode commune utilisant la spectrométrie de masse en tandem. Cette méthode permet la reconnaissance simultanée de plusieurs de ces maladies affectant différentes voies métaboliques. En France, le programme de dépistage néonatal (DNN) des MHM, longtemps limité à la phénylcétonurie, a récemment été étendu au déficit en déshydrogénase des acyl-CoA à chaîne moyenne (MCADD). Le rationnel, la méthode et l'organisation de ce nouveau DNN sont décrits dans cet article. Sept nouvelles MHM (leucinose, homocystinurie, tyrosinémie de type I, acidurie glutarique de type I, acidurie isovalérique, déficit en déshydrogénase des hydroxy-acyl-CoA à chaîne longue, déficit du transporteur de la carnitine) devraient être dépistées, grâce à une prochaine extension du programme de DNN. Des efforts sont nécessaires pour mieux comprendre et prévoir la signification de chaque test anormal à la naissance, diminuer les taux de faux positifs, et développer les stratégies de prise en charge adéquates.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Errores Innatos del Metabolismo Lipídico , Errores Innatos del Metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Humanos , Recién Nacido , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Enfermedades Mitocondriales , Enfermedades Musculares , Tamizaje Neonatal
9.
Hum Mutat ; 41(9): 1645-1661, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623794

RESUMEN

The family of Tre2-Bub2-Cdc16 (TBC)-domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP-independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss-of-function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B-deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Sobrecrecimiento Gingival/genética , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Adulto , Niño , Endocitosis , Femenino , Células HeLa , Humanos , Lactante , Mutación con Pérdida de Función , Masculino , Linaje , Secuenciación del Exoma , Adulto Joven
10.
Genet Med ; 22(11): 1887-1891, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32565546

RESUMEN

PURPOSE: Abnormality of the corpus callosum (AbnCC) is etiologically a heterogeneous condition and the prognosis in prenatally diagnosed cases is difficult to predict. The purpose of our research was to establish the diagnostic yield using chromosomal microarray (CMA) and exome sequencing (ES) in cases with prenatally diagnosed isolated (iAbnCC) and nonisolated AbnCC (niAbnCC). METHODS: CMA and prenatal trio ES (pES) were done on 65 fetuses with iAbnCC and niAbnCC. Only pathogenic gene variants known to be associated with AbnCC and/or intellectual disability were considered. RESULTS: pES results were available within a median of 21.5 days (9-53 days). A pathogenic single-nucleotide variant (SNV) was identified in 12 cases (18%) and a pathogenic CNV was identified in 3 cases (4.5%). Thus, the genetic etiology was determined in 23% of cases. In all diagnosed cases, the results provided sufficient information regarding the neurodevelopmental prognosis and helped the parents to make an informed decision regarding the outcome of the pregnancy. CONCLUSION: Our results show the significant diagnostic and prognostic contribution of CMA and pES in cases with prenatally diagnosed AbnCC. Further prospective cohort studies with long-term follow-up of the born children will be needed to provide accurate prenatal counseling after a negative pES result.


Asunto(s)
Cuerpo Calloso , Exoma , Niño , Cuerpo Calloso/diagnóstico por imagen , Exoma/genética , Femenino , Feto/diagnóstico por imagen , Humanos , Embarazo , Estudios Prospectivos , Ultrasonografía Prenatal
11.
Am J Med Genet A ; 182(3): 565-569, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31793730

RESUMEN

RING Finger Protein 113 A (RNF113A, MIM 300951) is a highly conserved gene located on chromosome Xq24-q25, encoding a protein containing two conserved zinc finger domains involved in DNA alkylation repair and premessenger RNA splicing. To date, only one pathogenic variant of RNF113A, namely c.901C>T; p.Gln301Ter, has been reported in humans by Tarpey et al. in 2009. Thereafter, Corbett et al. stated that this variant was responsible for an X-linked form of nonphotosensitive trichothiodystrophy associated with profound intellectual disability, microcephaly, partial corpus callosum agenesis, microphallus, and absent or rudimentary testes. This variant was then shown to alter DNA alkylation repair, providing an additional argument supporting its pathogenicity and important clues about the underlying pathophysiology of nonphotosensitive trichothiodystrophy. Using exome sequencing, we identified exactly the same RNF113A variant in two fetuses affected with abnormalities similar to those previously reported by Corbett et al. To our knowledge, this is the second report of a RNF113A pathogenic variant in humans.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Síndromes de Tricotiodistrofia/genética , Agenesia del Cuerpo Calloso/diagnóstico , Agenesia del Cuerpo Calloso/patología , Exoma/genética , Femenino , Genes Ligados a X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patología , Linaje , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/patología , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...