Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1357360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994357

RESUMEN

Background: The impact of previous SARS-CoV-2 infection on the systemic immune response during tuberculosis (TB) disease has not been explored. Methods: An observational, cross-sectional cohort was established to evaluate the systemic immune response in persons with pulmonary tuberculosis with or without previous SARS-CoV-2 infection. Those participants were recruited in an outpatient referral clinic in Rio de Janeiro, Brazil. TB was defined as a positive Xpert-MTB/RIF Ultra and/or a positive culture of Mycobacterium tuberculosis from sputum. Stored plasma was used to perform specific serology to identify previous SARS-CoV-2 infection (TB/Prex-SCoV-2 group) and confirm the non- infection of the tuberculosis group (TB group). Plasmatic cytokine/chemokine/growth factor profiling was performed using Luminex technology. Tuberculosis severity was assessed by clinical and laboratory parameters. Participants from TB group (4.55%) and TB/Prex-SCoV-2 (0.00%) received the complete COVID-19 vaccination. Results: Among 35 participants with pulmonary TB, 22 were classified as TB/Prex-SCoV-2. The parameters associated with TB severity, together with hematologic and biochemical data were similar between the TB and TB/Prex-SCoV-2 groups. Among the signs and symptoms, fever and dyspnea were significantly more frequent in the TB group than the TB/Prex-SCoV-2 group (p < 0,05). A signature based on lower amount of plasma EGF, G-CSF, GM-CSF, IFN-α2, IL-12(p70), IL-13, IL-15, IL-17, IL-1ß, IL-5, IL-7, and TNF-ß was observed in the TB/Prex-SCoV-2 group. In contrast, MIP-1ß was significantly higher in the TB/Prex-SCoV-2 group than the TB group. Conclusion: TB patients previously infected with SARS-CoV-2 had an immunomodulation that was associated with lower plasma concentrations of soluble factors associated with systemic inflammation. This signature was associated with a lower frequency of symptoms such as fever and dyspnea but did not reflect significant differences in TB severity parameters observed at baseline.


Asunto(s)
COVID-19 , Citocinas , SARS-CoV-2 , Tuberculosis Pulmonar , Humanos , COVID-19/inmunología , COVID-19/sangre , Masculino , Femenino , Estudios Transversales , Adulto , Persona de Mediana Edad , SARS-CoV-2/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/sangre , Citocinas/sangre , Citocinas/inmunología , Brasil/epidemiología
2.
Pathogens ; 13(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668273

RESUMEN

Growing evidence points to the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens from individuals with active tuberculosis (TB) disease. These bacteria are unable to grow on solid media but can resuscitate in liquid media. Given the epidemiological success of certain clinical genotype families of Mycobacterium tuberculosis, we hypothesize that different strains may have distinct mechanisms of adaptation and tolerance. We used an in vitro carbon starvation model to determine the propensity of strains from lineages 2 and 4 that included the Beijing and LAM families respectively, to generate DCTB. Beijing strains were associated with a greater propensity to produce DCTB compared to LAM strains. Furthermore, LAM strains required culture filtrate (CF) for resuscitation whilst starved Beijing strains were not dependent on CF. Moreover, Beijing strains showed improved resuscitation with cognate CF, suggesting the presence of unique growth stimulatory molecules in this family. Analysis of starved Beijing and LAM strains showed longer cells, which with resuscitation were restored to a shorter length. Cell wall staining with fluorescent D-amino acids identified strain-specific incorporation patterns, indicating that cell surface remodeling during resuscitation was distinct between clinical strains. Collectively, our data demonstrate that M. tuberculosis clinical strains from different genotype lineages have differential propensities to generate DCTB, which may have implications for TB treatment success.

3.
Front Cell Infect Microbiol ; 13: 1283328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130775

RESUMEN

Ongoing SARS-CoV-2 infections are driven by the emergence of various variants, with differential propensities to escape immune containment. Single nucleotide polymorphisms (SNPs) in the RNA genome result in altered protein structures and when these changes occur in the S-gene, encoding the spike protein, the ability of the virus to penetrate host cells to initiate an infection can be significantly altered. As a result, vaccine efficacy and prior immunity may be diminished, potentially leading to new waves of infection. Early detection of SARS-CoV-2 variants using a rapid and scalable approach will be paramount for continued monitoring of new infections. In this study, we developed minor groove-binding (MGB) probe-based qPCR assays targeted to specific SNPs in the S-gene, which are present in variants of concern (VOC), namely the E484K, N501Y, G446S and D405N mutations. A total of 95 archived SARS-CoV-2 positive clinical specimens collected in Johannesburg, South Africa between February 2021 and March 2022 were assessed using these qPCR assays. To independently confirm SNP detection, Sanger sequencing of the relevant region in the S-gene were performed. Where a PCR product could be generated and sequenced, qPCR assays were 100% concordant highlighting the robustness of the approach. These assays, and the approach described, offer the opportunity for easy detection and scaling of targeted detection of variant-defining SNPs in the clinical setting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Polimorfismo de Nucleótido Simple , Sudáfrica , Mutación
4.
Crit Rev Microbiol ; : 1-20, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909097

RESUMEN

Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.

5.
PLoS One ; 18(9): e0291146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37769001

RESUMEN

With the onset of COVID-19, the development of ex vivo laboratory models became an urgent priority to study host-pathogen interactions in response to the pandemic. In this study, we aimed to establish an ex vivo mucosal tissue explant challenge model for studying SARS-CoV-2 infection and replication. Nasal or oral tissue samples were collected from eligible participants and explants generated from the tissue were infected with various SARS-CoV-2 strains, including IC19 (lineage B.1.13), Beta (lineage B.1.351) and Delta (lineage B.1.617.2). A qRT-PCR assay used to measure viral replication in the tissue explants over a 15-day period, demonstrated no replication for any viral strains tested. Based on this, the ex vivo challenge protocol was modified by reducing the viral infection time and duration of sampling. Despite these changes, viral infectivity of the nasal and oral mucosa was not improved. Since 67% of the enrolled participants were already vaccinated against SARS-CoV-2, it is possible that neutralizing antibodies in explant tissue may have prevented the establishment of infection. However, we were unable to optimize plaque assays aimed at titrating the virus in supernatants from both infected and uninfected tissue, due to limited volume of culture supernatant available at the various collection time points. Currently, the reasons for the inability of these mucosal tissue samples to support replication of SARS-CoV-2 ex vivo remains unclear and requires further investigation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes/farmacología , Membrana Mucosa
6.
Front Cell Infect Microbiol ; 13: 1186191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37743867

RESUMEN

Introduction: Oral and/or tongue swabs have demonstrated ability to detect Mycobacterium tuberculosis (Mtb) in adults with pulmonary tuberculosis (TB). Swabs provide useful alternative specimens for diagnosis of TB using molecular assays however, the diagnostic pickup by culture requires further improvement and development. Several studies identified the presence of differentially culturable tubercle bacilli (DCTB) populations in a variety of clinical specimens. These organisms do not grow in routine laboratory media and require growth factors in the form of culture filtrate (CF) from logarithmic phase cultures of Mtb H37Rv. Methods: Herein, we compared the diagnostic performance of sputum and tongue swabs using Mycobacterial Growth Indicator Tube (MGIT) assays, Auramine smear, GeneXpert and DCTB assays supplemented with or without CF. Results: From 89 eligible participants, 83 (93%), 66 (74%) and 79 (89%) were sputum positive by MGIT, smear and GeneXpert, respectively. The corresponding tongue swabs displayed a lower sensitivity with 39 (44%), 2 (2.0%) and 18 (20%) participants respectively for the same tests. We aimed to improve the diagnostic yield by utilizing DCTB assays. Sputum samples were associated with a higher positivity rate for CF-augmented DCTB at 82/89 (92%) relative to tongue swabs at 36/89 (40%). Similarly, sputum samples had a higher positivity rate for DCTB populations that were CF-independent at 64/89 (72%) relative to tongue swabs at 26/89 (29%). DCTB positivity increased significantly, relative to MGIT culture, for tongue swabs taken from HIV-positive participants. We next tested whether the use of an alternative smear stain, DMN-Trehalose, would improve diagnostic yield but noted no substantial increase. Discussion: Collectively, our data show that while tongue swabs yield lower bacterial numbers for diagnostic testing, the use of growth supplementation may improve detection of TB particularly in HIV-positive people but this requires further interrogation in larger studies.


Asunto(s)
Bacillus , Infecciones por VIH , Lacticaseibacillus casei , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Adulto , Humanos , Tuberculosis Pulmonar/diagnóstico , Firmicutes , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico
7.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36851212

RESUMEN

The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot proteomics study, we compared mucosal and systemic compartments in a South African cohort of vaccinated and unvaccinated individuals undergoing maxillofacial surgery with previous history of COVID-19 or not. Inflammatory profiles were analyzed in plasma, nasopharyngeal swabs, and nasal and oral tissue explant cultures, using Olink and Luminex technologies. SARS-CoV-2-specific antibody levels were measured in serum and tissue explants. An increased pro-inflammatory proteomic profile was measured in the nasal compartment compared to plasma. However, IP-10 and MIG levels were higher in secretions than in nasal tissue, and the opposite was observed for TGF-ß. Nasal anti-SARS-CoV-2 spike IgG correlated with mucosal MIG expression for all participants. A further positive correlation was found with IP-10 in BioNTech/Pfizer-vaccinated individuals. Systemic levels of anti-SARS-CoV-2 spike IgG elicited by this vaccine correlated with plasma IL-10, IL-6 and HBD4. Proteomic profiles measured in mucosal tissues and secretions using combined technologies could reveal correlates of protection at the mucosal portals of viral entry.

8.
Front Cell Infect Microbiol ; 12: 1031775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467724

RESUMEN

COVID-19 has resulted in nearly 598 million infections and over 6.46 million deaths since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019. The rapid onset of the pandemic, combined with the emergence of viral variants, crippled many health systems particularly from the perspective of coping with massive diagnostic loads. Shortages of diagnostic kits and capacity forced laboratories to store clinical samples resulting in huge backlogs, the effects of this on diagnostic pickup have not been fully understood. Herein, we investigated the impact of storing SARS-CoV-2 inoculated dry swabs on the detection and viability of four viral strains over a period of 7 days. Viral load, as detected by qRT-PCR, displayed no significant degradation during this time for all viral loads tested. In contrast, there was a ca. 2 log reduction in viral viability as measured by the tissue culture infectious dose (TCID) assay, with 1-3 log viable virus detected on dry swabs after 7 days. When swabs were coated with 102 viral copies of the Omicron variant, no viable virus was detected after 24 hours following storage at 4°C or room temperature. However there was no loss of PCR signal over 7 days. All four strains showed comparable growth kinetics and survival when cultured in Vero E6 cells. Our data provide information on the viability of SARS-CoV-2 on stored swabs in a clinical setting with important implications for diagnostic pickup and laboratory processing protocols. Survival after 7 days of SARS-CoV-2 strains on swabs with high viral loads may impact public health and biosafety practices in diagnostic laboratories.


Asunto(s)
Prueba de COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/genética , Carga Viral/métodos , Prueba de COVID-19/métodos
9.
Front Cell Infect Microbiol ; 12: 1072073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506007

RESUMEN

Tuberculosis (TB) infected individuals harbor a heterogenous population of differentially culturable tubercle bacilli (DCTB). Herein, we describe how DCTB assays using culture filtrate either containing or deficient in resuscitation promoting factors can uncover mixed infections. We demonstrate that Mycobacterium tuberculosis (Mtb) strain genotypes can be separated in DCTB assays based on their selective requirement for growth stimulatory factors. Beijing mixed infections appear to be associated with a higher bacterial load and reduced reliance on growth stimulatory factors. These data have important implications for identifying mixed infections and hetero-resistance, which in turn can affect selection of treatment regimen and establishment of transmission links.


Asunto(s)
Bacillus , Coinfección , Lacticaseibacillus casei , Mycobacterium tuberculosis , Tuberculosis , Humanos , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/genética , Firmicutes
10.
Front Cell Infect Microbiol ; 12: 943545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211964

RESUMEN

Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Manejo de la Enfermedad , Humanos , Mycobacterium tuberculosis/genética , Esputo , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología
11.
Front Cell Infect Microbiol ; 12: 949370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159642

RESUMEN

Several studies described the presence of non-replicating, drug-tolerant differentially culturable tubercle bacteria (DCTB) in sputum from patients with active tuberculosis (TB). These organisms are unable to form colonies on agar but can be recovered in liquid media supplemented with culture filtrate as a source of growth factors. Herein, we undertook to investigate the response of DCTB during the treatment of individuals with drug-resistant TB. A cohort of 100 participants diagnosed with rifampicin-resistant TB were enrolled and prospectively followed to monitor response to therapy using routine culture and limiting dilution assays, supplemented with culture filtrate (CF) to quantify DCTB. Fifteen participants were excluded due to contamination, and of the remaining 85 participants, 29, 49, and 7 were infected with rifampicin mono-resistant (RMR), multidrug-resistant (MDR), or extremely drug-resistant (XDR) TB, respectively. Analysis of baseline sputum demonstrated that CF supplementation of limiting dilution assays detected notable amounts of DCTB. Prevalence of DCTB was not influenced by smear status or mycobacterial growth indicator tube time to positivity. CF devoid of resuscitation promoting factors (Rpfs) yielded a greater amount of DCTB in sputum from participants with MDR-TB compared with those with RMR-TB. A similar effect was noted in DCTB assays without CF supplementation, suggesting that CF is dispensable for the detection of DCTB from drug-resistant strains. The HIV status of participants, and CD4 count, did not affect the amount of DCTB recovered. During treatment with second-line drug regimens, the probability of detecting DCTB from sputum specimens in liquid media with or without CF was higher compared with colony forming units, with DCTB detected up to 16 weeks post treatment. Collectively, these data point to differences in the ability of drug-resistant strains to respond to CF and Rpfs. Our findings demonstrate the possible utility of DCTB assays to diagnose and monitor treatment response for drug-resistant TB, particularly in immune compromised individuals with low CD4 counts.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Agar/farmacología , Agar/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Rifampin/farmacología , Rifampin/uso terapéutico , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología
12.
Front Cell Infect Microbiol ; 12: 1064148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710965

RESUMEN

Introduction: Routine efficacy assessments of new tuberculosis (TB) treatments include quantitative solid culture or routine liquid culture, which likely miss quantification of drug tolerant bacteria. To improve these assessments, comparative analyses using additional measures such as quantification of differentially culturable tubercle bacteria (DCTB) are required. Essential for enabling this is a comparative measure of TB treatment responses using routine solid and liquid culture with liquid limiting dilutions (LLDs) that detect DCTB in sputum. Methods: We recruited treatment-naïve TB patients, with and without HIV-infection, and serially quantified their sputum for DCTB over the course of treatment. Results: Serial sputum sampling in 73 individuals during their first 14 days of treatment demonstrated that clearance of DCTB was slower compared to routine solid culture. Treatment response appeared to be characterized by four patterns: (1) Classic bi-phasic bacterial clearance; (2) early non-responders with slower clearance; (3) paradoxical worsening with an increase in bacterial count upon treatment initiation; and (4) non-responders with no change in bacterial load. During treatment, LLDs displayed greater bacterial yield when compared with quantitative solid culture. Upon treatment completion, 74% [46/62] of specimens displayed residual DCTB and within this group, two recurrences were diagnosed. Residual DCTB upon treatment completion was associated with a higher proportion of MGIT culture, GeneXpert, and smear positivity at two months post treatment. No recurrences occurred in the group without residual DCTB. Discussion: These data indicate that DCTB assays detect distinct subpopulations of organisms in sputum that are missed by routine solid and liquid culture, and offer important alternatives for efficacy assessments of new TB treatments. The residual DCTB observed upon treatment completion suggests that TB treatment does not always eliminate all bacterial populations, a finding that should be investigated in larger cohorts.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Carga Bacteriana , Esputo/microbiología , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico
13.
PLoS One ; 16(11): e0259181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34784363

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencias de Aminoácidos , Antituberculosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Endopeptidasas/química , Endopeptidasas/clasificación , Endopeptidasas/genética , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Filogenia , Estructura Secundaria de Proteína
14.
Tuberculosis (Edinb) ; 129: 102103, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34144375

RESUMEN

While some healthcare systems have shifted to molecular diagnostics, culture still remains the gold standard for tuberculosis diagnosis, but it is limited by its long duration to a positive result. Methods to reduce time to culture positivity (TTP) are urgently required. We determined if growth factor supplementation in the mycobacterial growth indicator tube (MGIT) culture system reduces TTP. MGITs were supplemented with fresh culture filtrate (CF) as a source of growth stimulatory molecules from axenic Mycobacterium tuberculosis culture. Different volumes of CF and media components were tested. The performance of these modified MGITs was assessed with sputum from HIV-TB co-infected individuals. Reducing the volume of MGIT cultures and removal of detergent from cultures grown to generate CF had a marginal but significant benefit on reducing TTP. In a subset of specimens, CF inhibited growth. Following optimization of methods, a reduced TTP occurred in specimens with low bacillary load as measured by GeneXpert, smear microscopy and colony forming units. Three specimens that were negative under standard conditions flagged positive following CF supplementation. Our data provide preliminary evidence that addition of CF to MGIT cultures can enhance detection of M. tuberculosis in HIV-TB co-infected patients with low sputum bacillary loads.


Asunto(s)
Técnicas Bacteriológicas/métodos , Infecciones por VIH , Esputo/microbiología , Tuberculosis/diagnóstico , Adulto , Coinfección , Estudios Transversales , Medios de Cultivo Condicionados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sudáfrica
15.
BMC Infect Dis ; 21(1): 466, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022850

RESUMEN

BACKGROUND: Pulmonary tuberculosis (TB) in people living with HIV (PLH) frequently presents as sputum smear-negative. However, clinical trials of TB in adults often use smear-positive individuals to ensure measurable bacterial responses following initiation of treatment, thereby excluding HIV-infected patients from trials. METHODS: In this prospective case cohort study, 118 HIV-seropositive TB patients were assessed prior to initiation of standard four-drug TB therapy and at several time points through 35 days. Sputum bacillary load, as a marker of treatment response, was determined serially by: smear microscopy, Xpert MTB/RIF, liquid culture, and colony counts on agar medium. RESULTS: By all four measures, patients who were baseline smear-positive had higher bacterial loads than those presenting as smear-negative, until day 35. However, most smear-negative PLH had significant bacillary load at enrolment and their mycobacteria were cleared more rapidly than smear-positive patients. Smear-negative patients' decline in bacillary load, determined by colony counts, was linear to day 7 suggesting measurable bactericidal activity. Moreover, the decrease in bacterial counts was comparable to smear-positive individuals. Increasing cycle threshold values (Ct) on the Xpert assay in smear-positive patients to day 14 implied decreasing bacterial load. CONCLUSION: Our data suggest that smear-negative PLH can be included in clinical trials of novel treatment regimens as they contain sufficient viable bacteria, but allowances for late exclusions would have to be made in sample size estimations. We also show that increases in Ct in smear-positive patients to day 14 reflect treatment responses and the Xpert MTB/RIF assay could be used as biomarker for early treatment response.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA , Antituberculosos/uso terapéutico , Carga Bacteriana/efectos de los fármacos , Seropositividad para VIH , VIH/inmunología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Infecciones Oportunistas Relacionadas con el SIDA/tratamiento farmacológico , Infecciones Oportunistas Relacionadas con el SIDA/virología , Adulto , Fármacos Anti-VIH/uso terapéutico , Pruebas Diagnósticas de Rutina , Femenino , Estudios de Seguimiento , Seropositividad para VIH/tratamiento farmacológico , Seropositividad para VIH/virología , Humanos , Masculino , Microscopía , Técnicas de Amplificación de Ácido Nucleico , Estudios Prospectivos , Resultado del Tratamiento , Tuberculosis Pulmonar/virología
16.
Sci Rep ; 11(1): 6493, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753820

RESUMEN

Rapid detection of tuberculosis (TB) infection is paramount to curb further transmission. The gold standard for this remains mycobacterial culture, however emerging evidence confirms the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens. These bacteria do not grow under standard culture conditions and require the presence of culture filtrate (CF), from axenic cultures of Mycobacterium tuberculosis (Mtb), to emerge. It has been hypothesized that molecules such as resuscitation promoting factors (Rpfs), fatty acids and cyclic-AMP (cAMP) present in CF are responsible for the growth stimulatory activity. Herein, we tested the ability of CF from the non-pathogenic bacterium Mycobacterium smegmatis (Msm) to stimulate the growth of DCTB, as this organism provides a more tractable source of CF. We also interrogated the role of Mtb Rpfs in stimulation of DCTB by creating recombinant strains of Msm that express Mtb rpf genes in various combinations. CF derived from this panel of strains was tested on sputum from individuals with drug susceptible TB prior to treatment. CF from wild type Msm did not enable detection of DCTB in a manner akin to Mtb CF preparations and whilst the addition of RpfABMtb and RpfABCDEMtb to an Msm mutant devoid of its native rpfs did improve detection of DCTB compared to the no CF control, it was not statistically different to the empty vector control. To further investigate the role of Rpfs, we compared the growth stimulatory activity of CF from Mtb, with and without Rpfs and found these to be equivalent. Next, we tested chemically diverse fatty acids and cAMP for growth stimulation and whilst some selective stimulatory effect was observed, this was not significantly higher than the media control and not comparable to CF. Together, these data indicate that the growth stimulatory effect observed with Mtb CF is most likely the result of a combination of factors. Future work aimed at identifying the nature of these growth stimulatory molecules may facilitate improvement of culture-based diagnostics for TB.


Asunto(s)
Técnicas Bacteriológicas/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Tuberculosis Pulmonar/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/diagnóstico
17.
Adv Appl Microbiol ; 108: 115-161, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31495404

RESUMEN

Tuberculosis (TB) claims more human lives than any other infectious organism. The lethal synergy between TB-HIV infection and the rapid emergence of drug resistant strains has created a global public health threat that requires urgent attention. Mycobacterium tuberculosis, the causative agent of TB is an exquisitely well-adapted human pathogen, displaying the ability to promptly remodel metabolism when encountering stressful environments during pathogenesis. A careful study of the mechanisms that enable this adaptation will enhance the understanding of key aspects related to the microbiology of TB disease. However, these efforts require microbiological model systems that mimic host conditions in the laboratory. Herein, we describe several in vitro model systems that generate non-replicating and differentially culturable mycobacteria. The changes that occur in the metabolism of M. tuberculosis in some of these models and how these relate to those reported for human TB disease are discussed. We describe mechanisms that tubercle bacteria use to resuscitate from these non-replicating conditions, together with phenotypic heterogeneity in terms of culturabiliy of M. tuberculosis in sputum. Transcriptional changes in M. tuberculosis that allow for adaptation of the organism to the lung environment are also summarized. Finally, given the emerging importance of the microbiome in various infectious diseases, we provide a description of how the lung and gut microbiome affect susceptibility to TB infection and response to treatment. Consideration of these collective aspects will enhance the understanding of basic metabolism, physiology, drug tolerance and persistence in M. tuberculosis to enable development of new therapeutic interventions.


Asunto(s)
Tuberculosis Latente/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis Pulmonar/microbiología , Animales , Antituberculosos/farmacología , Susceptibilidad a Enfermedades/microbiología , Microbioma Gastrointestinal , Humanos , Hipoxia/metabolismo , Tuberculosis Latente/tratamiento farmacológico , Pulmón/microbiología , Microbiota , Mycobacterium tuberculosis/metabolismo , Nutrientes/metabolismo , Resucitación , Esputo/microbiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico
18.
Am J Respir Crit Care Med ; 194(12): 1532-1540, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27387272

RESUMEN

RATIONALE: Recent studies suggest that baseline tuberculous sputum comprises a mixture of routinely culturable and differentially culturable tubercle bacteria (DCTB). The latter seems to be drug tolerant and dependent on resuscitation-promoting factors (Rpfs). OBJECTIVES: To further explore this, we assessed sputum from patients with tuberculosis for DCTB and studied the impact of exogenous culture filtrate (CF) supplementation ex vivo. METHODS: Sputum samples from adults with tuberculosis and HIV-1 and adults with no HIV-1 were used for most probable number (MPN) assays supplemented with CF and Rpf-deficient CF, to detect CF-dependent and Rpf-independent DCTB, respectively. MEASUREMENTS AND MAIN RESULTS: In 110 individuals, 19.1% harbored CF-dependent DCTB and no Rpf-independent DCTB. Furthermore, 11.8% yielded Rpf-independent DCTB with no CF-dependent DCTB. In addition, 53.6% displayed both CF-dependent and Rpf-independent DCTB, 1.8% carried CF-independent DCTB, and 13.6% had no DCTB. Sputum from individuals without HIV-1 yielded higher CF-supplemented MPN counts compared with counterparts with HIV-1. Furthermore, individuals with HIV-1 with CD4 counts greater than 200 cells/mm3 displayed higher CF-supplemented MPN counts compared with participants with HIV-1 with CD4 counts less than 200 cells/mm3. CF supplementation allowed for detection of mycobacteria in 34 patients with no culturable bacteria on solid media. Additionally, the use of CF enhanced detection of sputum smear-negative individuals. CONCLUSIONS: These observations demonstrate a novel Rpf-independent DCTB population in sputum and reveal that reduced host immunity is associated with lower prevalence of CF-responsive bacteria. Quantification of DCTB in standard TB diagnosis would be beneficial because these organisms provide a putative biomarker to monitor treatment response and risk of disease recurrence.


Asunto(s)
Infecciones por VIH/epidemiología , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/inmunología , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/inmunología , Adulto , Comorbilidad , Femenino , Infecciones por VIH/inmunología , Humanos , Masculino , Mycobacterium tuberculosis/inmunología , Prevalencia , Sensibilidad y Especificidad , Sudáfrica/epidemiología
19.
Biometals ; 29(4): 637-50, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246555

RESUMEN

Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.


Asunto(s)
Fármacos Anti-VIH/farmacología , Antituberculosos/farmacología , VIH/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos Organometálicos/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Antituberculosos/síntesis química , Antituberculosos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Paladio/química , Paladio/farmacología , Fosfinas/química , Fosfinas/farmacología , Platino (Metal)/química , Platino (Metal)/farmacología , Relación Estructura-Actividad
20.
Mutat Res ; 779: 24-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26125998

RESUMEN

Hydroxyl radical (OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ((1)02) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues did not result in any growth/survival defects or changes in mutation rates. Taken together these data indicate that the mycobacterial mutY, in combination with the Fpg DNA N-glycosylases, plays an important role in controlling mutagenesis under oxidative stress.


Asunto(s)
ADN Glicosilasas/genética , Reparación del ADN/genética , ADN-Formamidopirimidina Glicosilasa/genética , Mycobacterium smegmatis/enzimología , ADN Glicosilasas/metabolismo , ADN-Formamidopirimidina Glicosilasa/metabolismo , Genoma Bacteriano/efectos de los fármacos , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/toxicidad , Radical Hidroxilo/toxicidad , Mutagénesis/genética , Mutágenos/metabolismo , Mutágenos/toxicidad , Mutación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Pirimidinas/metabolismo , Pirimidinas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA