Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Heart Rhythm ; 21(4): 389-396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38159790

RESUMEN

BACKGROUND: Ultrastructural findings immediately after pulsed field ablation (PFA) of the myocardium have not been described. OBJECTIVES: The purpose of this study was to elucidate ultrastructural characteristics and differences between microsecond PFA at the 1- and 4-hour timepoints after pulse delivery and to compare them to irrigated radiofrequency ablation (RFA) lesions. METHODS: Healthy swine underwent endocardial PFA or RFA followed by necropsy. Discrete microsecond PFA and irrigated RFA lesions were created in the ventricles with a lattice tip ablation catheter. Lesions were delivered in a manner so as to allow sampling to occur 1 and 4 hours after ablation. All lesions were located at necropsy, and samples were carefully obtained from within the lesion core, lesion periphery, and adjacent healthy myocardium. Transmission electron microscopic assessment was performed after fixation using paraformaldehyde and glutaraldehyde. RESULTS: One hour after microsecond PFA delivery, myocytes were noted to be significantly and uniformly disrupted. Clustered, misaligned, swollen mitochondria coupled with degenerating nuclei and condensed chromatin were visualized. These findings progressed over the subsequent few hours with worsening edema. Similar changes were seen with RFA but reduced in severity. However, there was prominent extravasation of red blood cells with occlusion of capillaries that was not seen in PFA. At the lesion periphery, an abrupt change in the degree of myocyte damage was observed with PFA but not RFA. CONCLUSION: Transmission electron microscopy demonstrates evidence of widespread destruction of myocytes as early as an hour after PFA and corroborates known histologic features such as sparing of vessels and sharp lesion margins.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Ablación por Radiofrecuencia , Porcinos , Animales , Ablación por Catéter/efectos adversos , Miocardio , Ventrículos Cardíacos/cirugía , Frecuencia Cardíaca , Fibrilación Atrial/cirugía
2.
Laryngoscope ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975487

RESUMEN

OBJECTIVES: Tracheal transplantation is an ideal option for the reconstruction of long-segment circumferential tracheal defects. Our group performed the first successful vascularized single-staged tracheal transplantation in January 2021. Although a rigid biocompatible structure is necessary for a functioning tracheal replacement, the importance of ciliated epithelium, which allows for critical mucociliary clearance, is now being appreciated. Here, we examined the histological changes of the first single-staged human tracheal transplant from serial endoscopic biopsies. METHODS: Biopsies of the tracheal mucosa were serially obtained since the time of the tracheal transplantation. Samples were examined via hematoxylin and eosin, electron microscopy, and immunohistochemistry. RESULTS: One week after transplantation, there is loss of ciliated epithelium and seromucinous cells, with only a basal layer of epithelium remaining. By 2 weeks, however, the epithelium begins to recover, albeit differently depending on the location of the biopsy. Near the site of tracheal anastomosis, there is epithelial proliferation, with the appearance of early ciliated cells. However, in the midgraft, there appears to be evidence of squamous metaplasia. Over time, however, normal ciliated epithelium and mucous cells appear without signs of chronic inflammation. CONCLUSIONS: Critically, the tracheal allograft regained normal appearing respiratory epithelium after initial ischemic injury. The histologic differences at the midgraft versus anastomosis may suggest unique mechanisms of reepithelialization. At the recipient-donor interface, there may be a faster direct migration of recipient-derived epithelial cells, in line with preclinical studies. The midgraft, in contrast, responds with epithelial proliferation from the donor basal cells or dedifferentiated mucous cells. LEVEL OF EVIDENCE: N/A Laryngoscope, 2023.

3.
Mov Disord ; 38(12): 2163-2172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37670483

RESUMEN

BACKGROUND: Vacuolar protein sorting 13 homolog A (VPS13A) disease, historically known as chorea-acanthocytosis, is a rare neurodegenerative disorder caused by biallelic mutations in VPS13A, usually resulting in reduced or absent levels of its protein product, VPS13A. VPS13A localizes to contact sites between subcellular organelles, consistent with its recently identified role in lipid transfer between membranes. Mutations are associated with neuronal loss in the striatum, most prominently in the caudate nucleus, and associated marked astrogliosis. There are no other known disease-specific cellular changes (eg, protein aggregation), but autopsy reports to date have been limited, often lacking genetic or biochemical diagnostic confirmation. OBJECTIVE: The goal of this study was to characterize neuropathological findings in the brains of seven patients with VPS13A disease (chorea-acanthocytosis). METHODS: In this study, we collected brain tissues and clinical data from seven cases of VPS13A for neuropathological analysis. The clinical diagnosis was confirmed by the presence of VPS13A mutations and/or immunoblot showing the loss or reduction of VPS13A protein. Tissues underwent routine, special, and immunohistochemical staining focused on neurodegeneration. Electron microscopy was performed in one case. RESULTS: Gross examination showed severe striatal atrophy. Microscopically, there was neuronal loss and astrogliosis in affected regions. Luxol fast blue staining showed variable lipid accumulation with diverse morphology, which was further characterized by electron microscopy. In some cases, rare degenerating p62- and ubiquitin-positive cells were present in affected regions. Calcifications were present in four cases, being extensive in one. CONCLUSIONS: We present the largest autopsy series of biochemically and genetically confirmed VPS13A disease and identify novel histopathological findings implicating abnormal lipid accumulation. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Neuroacantocitosis , Humanos , Autopsia , Núcleo Caudado/metabolismo , Gliosis , Lípidos , Neuroacantocitosis/genética , Neuroacantocitosis/diagnóstico , Neuroacantocitosis/patología , Proteínas de Transporte Vesicular/genética
4.
Nat Metab ; 5(4): 607-625, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024752

RESUMEN

The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPß, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs. We also uncover promoter XOR orthologue variants in humans associated with high risk of DKD. We introduced the risk variant into the 5'-regulatory region of XOR in DKD-resistant mice, which resulted in increased Xor activity associated with podocyte depletion, albuminuria, oxidative stress and damage restricted to the glomerular endothelium, which increase further with type 1 diabetes, high-fat diet and ageing. Therefore, differential regulation of Xor contributes to phenotypic consequences with diabetes and ageing.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Masculino , Ratones , Animales , Nefropatías Diabéticas/genética , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Predisposición Genética a la Enfermedad , Ratones Endogámicos DBA , Ratones Endogámicos C57BL
5.
BMC Public Health ; 23(1): 657, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024865

RESUMEN

BACKGROUND: The Girinka program in Rwanda has contributed to an increase in milk production, as well as to reduced malnutrition and increased incomes. But dairy products can be hazardous to health, potentially transmitting diseases such as bovine brucellosis, tuberculosis, and cause diarrhea. We analyzed the burden of foodborne disease due to consumption of raw milk and other dairy products in Rwanda to support the development of policy options for the improvement of the quality and safety of milk. METHODS: Disease burden data for five pathogens (Campylobacter spp., nontyphoidal Salmonella enterica, Cryptosporidium spp., Brucella spp., and Mycobacterium bovis) were extracted from the 2010 WHO Foodborne Disease Burden Epidemiology Reference Group (FERG) database and merged with data of the proportion of foodborne disease attributable to consuming dairy products from FERG and a separately published Structured Expert Elicitation study to generate estimates of the uncertainty distributions of the disease burden by Monte Carlo simulation. RESULTS: According to WHO, the foodborne disease burden (all foods) of these five pathogens in Rwanda in 2010 was like or lower than in the Africa E subregion as defined by FERG. There were 57,500 illnesses occurring in Rwanda owing to consumption of dairy products, 55 deaths and 3,870 Disability Adjusted Life Years (DALYs) causing a cost-of-illness of $3.2 million. 44% of the burden (in DALYs) was attributed to drinking raw milk and sizeable proportions were also attributed to traditionally (16-23%) or industrially (6-22%) fermented milk. More recent data are not available, but the burden (in DALYs) of tuberculosis and diarrheal disease by all causes in Rwanda has declined between 2010 and 2019 by 33% and 46%, respectively. CONCLUSION: This is the first study examining the WHO estimates of the burden of foodborne disease on a national level in Rwanda. Transitioning from consuming raw to processed milk (fermented, heat treated or otherwise) may prevent a considerable disease burden and cost-of-illness, but the full benefits will only be achieved if there is a simultaneous improvement of pathogen inactivation during processing, and prevention of recontamination of processed products.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Enfermedades Transmitidas por los Alimentos , Animales , Bovinos , Humanos , Rwanda/epidemiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Leche/microbiología , Costo de Enfermedad
6.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36853804

RESUMEN

Despite recent progress in the identification of mediators of podocyte injury, mechanisms underlying podocyte loss remain poorly understood, and cell-specific therapy is lacking. We previously reported that kidney and brain expressed protein (KIBRA), encoded by WWC1, promotes podocyte injury in vitro through activation of the Hippo signaling pathway. KIBRA expression is increased in the glomeruli of patients with focal segmental glomerulosclerosis, and KIBRA depletion in vivo is protective against acute podocyte injury. Here, we tested the consequences of transgenic podocyte-specific WWC1 expression in immortalized human podocytes and in mice, and we explored the association between glomerular WWC1 expression and glomerular disease progression. We found that KIBRA overexpression in immortalized human podocytes promoted cytoplasmic localization of Yes-associated protein (YAP), induced actin cytoskeletal reorganization, and altered focal adhesion expression and morphology. WWC1-transgenic (KIBRA-overexpressing) mice were more susceptible to acute and chronic glomerular injury, with evidence of YAP inhibition in vivo. Of clinical relevance, glomerular WWC1 expression negatively correlated with renal survival among patients with primary glomerular diseases. These findings highlight the importance of KIBRA/YAP signaling to the regulation of podocyte structural integrity and identify KIBRA-mediated injury as a potential target for podocyte-specific therapy in glomerular disease.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Ratones , Animales , Podocitos/metabolismo , Regulación hacia Arriba , Glomérulos Renales/metabolismo , Transducción de Señal , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Progresión de la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
7.
Cancer Res Commun ; 2(6): 518-532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911788

RESUMEN

During the 9/11 attacks individuals were exposed to World Trade Center (WTC) dust which contained a complex mixture of carcinogens. Epidemiological studies have revealed the increased incidence of prostate and thyroid cancer in WTC survivors and responders. While reports have shown that WTC-dust associates with the increased prevalence of inflammatory related disorders, studies to date have not determined whether this exposure impacts cancer progression. In this study, we have used genetically engineered mouse (GEM) models with prostate specific deletion of the PTEN tumor suppressor to study the impact of WTC-dust exposure on deposition of dust particles, inflammation, and cancer progression. In normal C57/BL6 mice, dust exposure increased cellular expression of inflammatory genes with highest levels in the lung and peripheral blood. In normal and tumor bearing GEM mice, increased immune cell infiltration to the lungs was observed. Pathological evaluation of mice at different time points showed that WTC-dust exposure promoted PI3K-AKT activation, increased epithelial proliferation and acinar invasion in prostates with heterozygous and homozygous Pten loss. Using autochthonous and transplant GEM models of prostate cancer we demonstrated that dust exposure caused reduced survival as compared to control cohorts. Finally, we used imaging mass cytometry (IMC) to detect elevated immune cell infiltration and cellular expression of inflammatory markers in prostate tumors isolated from human WTC survivors. Collectively, our study shows that chronic inflammation, induced by WTC dust exposure, promotes more aggressive cancer in genetically predisposed prostates and potentially in patients.


Asunto(s)
Enfermedades Pulmonares , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Polvo , Inflamación , Fosfatidilinositol 3-Quinasas , Próstata , Neoplasias de la Próstata/epidemiología , Fosfohidrolasa PTEN/genética
8.
Kidney Int ; 102(2): 293-306, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35469894

RESUMEN

Recent epidemiological studies suggest that some patients with diabetes progress to kidney failure without significant albuminuria and glomerular injury, suggesting a critical role of kidney tubular epithelial cell (TEC) injury in diabetic kidney disease (DKD) progression. However, the major risk factors contributing to TEC injury and progression in DKD remain unclear. We previously showed that expression of endoplasmic reticulum-resident protein Reticulon-1A (RTN1A) increased in human DKD, and the increased RTN1A expression promoted TEC injury through endoplasmic reticulum (ER) stress response. Here, we show that TEC-specific RTN1A overexpression worsened DKD in mice, evidenced by enhanced tubular injury, tubulointerstitial fibrosis, and kidney function decline. But RTN1A overexpression did not exacerbate diabetes-induced glomerular injury or albuminuria. Notably, RTN1A overexpression worsened both ER stress and mitochondrial dysfunction in TECs under diabetic conditions by regulation of ER-mitochondria contacts. Mechanistically, ER-bound RTN1A interacted with mitochondrial hexokinase-1 and the voltage-dependent anion channel-1 (VDAC1), interfering with their association. This disengagement of VDAC1 from hexokinase-1 resulted in activation of apoptotic and inflammasome pathways, leading to TEC injury and loss. Thus, our observations highlight the importance of ER-mitochondrial crosstalk in TEC injury and the salient role of RTN1A-mediated ER-mitochondrial contact regulation in DKD progression.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Retículo Endoplásmico , Mitocondrias , Proteínas del Tejido Nervioso , Albuminuria/metabolismo , Animales , Apoptosis , Diabetes Mellitus/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Células Epiteliales/metabolismo , Hexoquinasa/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética
9.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34314701

RESUMEN

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Asunto(s)
Cerebro/patología , Proteína 4 Similar a ELAV/genética , Ácido Glutámico/metabolismo , Mutación/genética , Neuronas/patología , Organoides/metabolismo , Empalme del ARN/genética , Proteínas tau/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Biomarcadores/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Hidrazonas/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organoides/efectos de los fármacos , Organoides/ultraestructura , Fosforilación/efectos de los fármacos , Pirimidinas/farmacología , Empalme del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Gránulos de Estrés/efectos de los fármacos , Gránulos de Estrés/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
10.
Mod Pathol ; 34(8): 1456-1467, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33795830

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe and disproportionately affected New York City between March and May 2020. Here, we report on the first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City. Autopsies revealed large pulmonary emboli in six cases. Diffuse alveolar damage was present in over 90% of cases. We also report microthrombi in multiple organ systems including the brain, as well as hemophagocytosis. We additionally provide electron microscopic evidence of the presence of the virus in our samples. Laboratory results of our COVID-19 cohort disclose elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8, and TNFα. Our autopsy series of COVID-19-positive patients reveals that this disease, often conceptualized as a primarily respiratory viral illness, has widespread effects in the body including hypercoagulability, a hyperinflammatory state, and endothelial dysfunction. Targeting of these multisystemic pathways could lead to new treatment avenues as well as combination therapies against SARS-CoV-2 infection.


Asunto(s)
COVID-19/fisiopatología , Pulmón/fisiopatología , Embolia Pulmonar/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Coagulación Sanguínea , COVID-19/sangre , COVID-19/patología , COVID-19/virología , Causas de Muerte , Citocinas/sangre , Femenino , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Embolia Pulmonar/sangre , Embolia Pulmonar/patología , Embolia Pulmonar/virología , SARS-CoV-2/patogenicidad
11.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676971

RESUMEN

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Asunto(s)
COVID-19/virología , Enfermedades Gastrointestinales/virología , Inmunidad Mucosa , Mucosa Intestinal/virología , SARS-CoV-2/patogenicidad , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/mortalidad , Estudios de Casos y Controles , Células Cultivadas , Citocinas/sangre , Femenino , Enfermedades Gastrointestinales/diagnóstico , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/mortalidad , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Mucosa Intestinal/inmunología , Italia , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Pronóstico , Medición de Riesgo , Factores de Riesgo , SARS-CoV-2/inmunología , Carga Viral
12.
Am J Surg Pathol ; 45(5): 587-603, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481385

RESUMEN

Coronavirus Disease 2019 (COVID-19), caused by the novel Severe Acute Respiratory Syndrome-associated Coronavirus 2 (SARS-CoV-2), has become a global threat to public health. COVID-19 is more pathogenic and infectious than the prior 2002 pandemic caused by SARS-CoV-1. The pathogenesis of certain disease manifestations in COVID-19 such as diffuse alveolar damage (DAD) are thought to be similar to SARS-CoV-1. However, the exact pathogenesis of COVID-19 related deaths remains poorly understood. The aim of this article was to systematically summarize the rapidly emerging literature regarding COVID-19 autopsies. A meta-analysis was also conducted based on data accrued from preprint and published articles on COVID-19 (n=241 patients) and the results compared with postmortem findings associated with SARS-CoV-1 deaths (n=91 patients). Both autopsy groups included mostly adults of median age 70 years with COVID-19 and 50 years with SARS-CoV-1. Overall, prevalence of DAD was more common in SARS-CoV-1 (100.0%) than COVID-19 (80.9%) autopsies (P=0.001). Extrapulmonary findings among both groups were not statistically significant except for hepatic necrosis (P <0.001), splenic necrosis (P<0.006) and white pulp depletion (P <0.001) that were more common with SARS-CoV-1. Remarkable postmortem findings in association with COVID-19 apart from DAD include pulmonary hemorrhage, viral cytopathic effect within pneumocytes, thromboembolism, brain infarction, endotheliitis, acute renal tubular damage, white pulp depletion of the spleen, cardiac myocyte necrosis, megakaryocyte recruitment, and hemophagocytosis.


Asunto(s)
COVID-19/patología , Pulmón/patología , Síndrome Respiratorio Agudo Grave/patología , Autopsia , Encéfalo/patología , COVID-19/mortalidad , Estudios de Casos y Controles , Salud Global , Humanos , Riñón/patología , Miocardio/patología , Síndrome Respiratorio Agudo Grave/mortalidad , Bazo/patología
13.
Cell Mol Gastroenterol Hepatol ; 11(3): 763-770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32992052

RESUMEN

BACKGROUND & AIMS: Liver injury due to coronavirus disease 2019 (COVID-19) is being increasingly recognized. Abnormal liver chemistry tests of varying severities occur in a majority of patients. However, there is a dearth of accompanying liver histologic studies in these patients. METHODS: The current report details the clinical courses of 2 patients having severe COVID-19 hepatitis. Liver biopsies were analyzed under light microscopy, portions of liver tissue were hybridized with a target probe to the severe acute respiratory syndrome coronavirus-2 S gene, and small sections from formalin-fixed paraffin-embedded liver tissue were processed for electron microscopy. RESULTS: The liver histology of both cases showed a mixed inflammatory infiltrate with prominent bile duct damage, endotheliitis, and many apoptotic bodies. In situ hybridization and electron microscopy suggest the intrahepatic presence of severe acute respiratory syndrome coronavirus-2, the findings of which may indicate the possibility of direct cell injury. CONCLUSIONS: On the basis of the abundant apoptosis and severe cholangiocyte injury, these histopathologic changes suggest a direct cytopathic injury. Furthermore, some of the histopathologic changes may resemble acute cellular rejection occurring after liver transplantation. These 2 cases demonstrate that severe COVID-19 hepatitis can occur even in the absence of significant involvement of other organs.


Asunto(s)
COVID-19/virología , Hepatitis/virología , Hígado/patología , Hígado/virología , SARS-CoV-2/patogenicidad , Adulto , Apoptosis/fisiología , Biopsia , Femenino , Hepatitis/patología , Humanos , Hepatopatías/virología , Masculino , Persona de Mediana Edad
14.
Pharmgenomics Pers Med ; 13: 405-414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061533

RESUMEN

BACKGROUND: Genetic variants in the BCHE (butyrylcholinesterase) gene are associated with reduced BChE enzyme activity and prolonged post-succinylcholine neuromuscular blockade, which can lead to postanesthetic apnea and respiratory depression. Testing for BChE deficiency is usually performed by biochemical methods and is generally only offered to patients who have a personal or family history of prolonged post-succinylcholine neuromuscular blockade. PURPOSE: Using a clinical test, we investigated the frequencies of BCHE genotypes that are associated with increased risk for prolonged post-succinylcholine neuromuscular blockade. MATERIALS AND METHODS: Five BCHE variants, including the A (atypical, rs1799807), K (Kalow, rs1803274), F1 (fluoride-1, rs28933389), F2 (fluoride-2, rs28933390), and S1 (silent-1, rs398124632), were genotyped in a large (n = 13,301), multi-ethnic cohort in the United States. Subjects were recipients of pharmacogenetic testing ordered by their physicians as part of routine care. RESULTS: The minor allele frequencies of A, K, F1, F2, and S1 were 1.60%, 19.93%, 0.08%, 0.47%, and 0.04%, respectively, in this cohort. Based on a review of biochemical and clinical data of these variants, we grouped BCHE genotypes into four phenotypic categories to stratify the risk for prolonged post-succinylcholine neuromuscular blockade. Approximately 0.06% of patients were predicted to have severe BChE deficiency, 8% were predicted to have moderate BChE deficiency, and 29% were predicted to have mild BChE deficiency. Compared to other ethnic groups, Caucasians were predicted to have the highest frequency of BChE deficiency. CONCLUSION: While severe BChE deficiency is rare in the United States, approximately 8% of Americans are at moderate risk of prolonged post-succinylcholine neuromuscular blockade, suggesting that a sizable percentage of patients may benefit from preoperative genetic testing of BCHE.

15.
medRxiv ; 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935117

RESUMEN

Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY: Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.

16.
J Am Soc Nephrol ; 31(10): 2372-2391, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32737144

RESUMEN

BACKGROUND: Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS: Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS: Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS: LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.


Asunto(s)
Actinas/fisiología , Filamentos Intermedios/fisiología , Enfermedades Renales/patología , Glomérulos Renales/patología , Podocitos/patología , Vimentina/fisiología , Animales , Técnicas de Cultivo de Célula , Proteínas del Citoesqueleto/fisiología , Humanos , Enfermedades Renales/etiología , Proteínas con Dominio LIM/fisiología , Ratones , Ratas
18.
ACS Omega ; 5(20): 11455-11465, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478234

RESUMEN

We investigated the effect of carboxymethyl cellulose (CMC) and the particulate fluorine/acrylate hybrid polymer (FAHP) on the flow behavior of LiFePO4-based cathode slurries as well as on electrical and mechanical properties of the corresponding dry layers. CMC dissolves in water and partly adsorbs on the active particles. Thus, it has a strong impact on particle dispersion and a critical CMC concentration distinguished by a minimum in yield stress and high shear viscosity is found, indicating an optimum state of particle dispersion. In contrast, the nanoparticulate FAHP binder has no effect on slurry rheology. The electrical conductivity of the dry layer exhibits a maximum at a CMC concentration corresponding to the minimum in slurry viscosity but monotonically decreases with increasing FAHP concentration. Adhesion to the current collector is provided by FAHP, and the line load in peel tests strongly increases with FAHP concentration, whereas CMC does not contribute to adhesion. The electrical conductivity and adhesion values obtained here excel reported values for similar aqueous LiFePO4-based cathode layers using alternative polymeric binders. Both CMC and FAHP contribute to the cohesive strength of the layers; the contribution of CMC, however, is stronger than that of FAHP despite its lower intrinsic mechanical strength. We attribute this to its impact on the cathode microstructure since high CMC concentrations result in a strong alignment of LiFePO4 particles, which yields superior cohesive strength.

19.
J Cell Mol Med ; 24(13): 7214-7227, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32485073

RESUMEN

Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR-676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR-676 as a new reference control for the EV miR studies.


Asunto(s)
Vesículas Extracelulares/genética , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/genética , MicroARNs/genética , Animales , Regulación hacia Abajo/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Proteómica , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
20.
J Med Virol ; 92(7): 699-702, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32314810

RESUMEN

Neurologic sequelae can be devastating complications of respiratory viral infections. We report the presence of virus in neural and capillary endothelial cells in frontal lobe tissue obtained at postmortem examination from a patient infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Our observations of virus in neural tissue, in conjunction with clinical correlates of worsening neurologic symptoms, pave the way to a closer understanding of the pathogenic mechanisms underlying central nervous system involvement by SARS-CoV-2.


Asunto(s)
Ageusia/diagnóstico , Ataxia/diagnóstico , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/diagnóstico , Trastornos del Olfato/diagnóstico , Neumonía Viral/diagnóstico , Convulsiones/diagnóstico , Anciano , Ageusia/complicaciones , Ageusia/fisiopatología , Ageusia/virología , Ataxia/complicaciones , Ataxia/fisiopatología , Ataxia/virología , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Células Endoteliales/patología , Células Endoteliales/virología , Resultado Fatal , Lóbulo Frontal/irrigación sanguínea , Lóbulo Frontal/patología , Lóbulo Frontal/virología , Hospitalización , Humanos , Pulmón/irrigación sanguínea , Pulmón/patología , Pulmón/virología , Masculino , Neuronas/patología , Neuronas/virología , Trastornos del Olfato/complicaciones , Trastornos del Olfato/fisiopatología , Trastornos del Olfato/virología , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/fisiopatología , Neumonía Viral/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Convulsiones/complicaciones , Convulsiones/fisiopatología , Convulsiones/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...