Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Dev Cell ; 59(3): 415-430.e8, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38320485

RESUMEN

The early limb bud consists of mesenchymal limb progenitors derived from the lateral plate mesoderm (LPM). The LPM also gives rise to the mesodermal components of the flank and neck. However, the cells at these other levels cannot produce the variety of cell types found in the limb. Taking advantage of a direct reprogramming approach, we find a set of factors (Prdm16, Zbtb16, and Lin28a) normally expressed in the early limb bud and capable of imparting limb progenitor-like properties to mouse non-limb fibroblasts. The reprogrammed cells show similar gene expression profiles and can differentiate into similar cell types as endogenous limb progenitors. The further addition of Lin41 potentiates the proliferation of the reprogrammed cells. These results suggest that these same four factors may play pivotal roles in the specification of endogenous limb progenitors.


Asunto(s)
Extremidades , Proteínas , Ratones , Animales , Proteínas/metabolismo , Fibroblastos , Mesodermo/metabolismo , Esbozos de los Miembros
2.
Nat Genet ; 56(3): 420-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378865

RESUMEN

Rare coding mutations cause ∼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios. A total of 403 ncDNVs substantially affected cardiac CRE activity. A majority increased enhancer activity, often at regions with undetectable reference sequence activity. Of ten DNVs tested by introduction into their native genomic context, four altered the expression of neighboring genes and iPSC-CM transcriptional state. To prioritize future DNVs for functional testing, we used the MPRA data to develop a regression model, EpiCard. Analysis of an independent CHD cohort by EpiCard found enrichment of DNVs. Together, we developed a scalable system to measure the effect of ncDNVs on CRE activity and deployed it to systematically assess the contribution of ncDNVs to CHD.


Asunto(s)
Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Cardiopatías Congénitas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Mutación , Miocitos Cardíacos
3.
Circ Genom Precis Med ; 16(3): 224-231, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37165897

RESUMEN

BACKGROUND: Known genetic causes of congenital heart disease (CHD) explain <40% of CHD cases, and interpreting the clinical significance of variants with uncertain functional impact remains challenging. We aim to improve diagnostic classification of variants in patients with CHD by assessing the impact of noncanonical splice region variants on RNA splicing. METHODS: We tested de novo variants from trio studies of 2649 CHD probands and their parents, as well as rare (allele frequency, <2×10-6) variants from 4472 CHD probands in the Pediatric Cardiac Genetics Consortium through a combined computational and in vitro approach. RESULTS: We identified 53 de novo and 74 rare variants in CHD cases that alter splicing and thus are loss of function. Of these, 77 variants are in known dominant, recessive, and candidate CHD genes, including KMT2D and RBFOX2. In 1 case, we confirmed the variant's predicted impact on RNA splicing in RNA transcripts from the proband's cardiac tissue. Two probands were found to have 2 loss-of-function variants for recessive CHD genes HECTD1 and DYNC2H1. In addition, SpliceAI-a predictive algorithm for altered RNA splicing-has a positive predictive value of ≈93% in our cohort. CONCLUSIONS: Through assessment of RNA splicing, we identified a new loss-of-function variant within a CHD gene in 78 probands, of whom 69 (1.5%; n=4472) did not have a previously established genetic explanation for CHD. Identification of splice-altering variants improves diagnostic classification and genetic diagnoses for CHD. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT01196182.


Asunto(s)
Cardiopatías Congénitas , ARN , Niño , Humanos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Mutación , Empalme del ARN , Frecuencia de los Genes , Factores de Empalme de ARN/genética , Proteínas Represoras/genética
4.
bioRxiv ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37131696

RESUMEN

Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.

5.
Nat Med ; 29(2): 412-421, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36797483

RESUMEN

Dominant missense pathogenic variants in cardiac myosin heavy chain cause hypertrophic cardiomyopathy (HCM), a currently incurable disorder that increases risk for stroke, heart failure and sudden cardiac death. In this study, we assessed two different genetic therapies-an adenine base editor (ABE8e) and a potent Cas9 nuclease delivered by AAV9-to prevent disease in mice carrying the heterozygous HCM pathogenic variant myosin R403Q. One dose of dual-AAV9 vectors, each carrying one half of RNA-guided ABE8e, corrected the pathogenic variant in ≥70% of ventricular cardiomyocytes and maintained durable, normal cardiac structure and function. An additional dose provided more editing in the atria but also increased bystander editing. AAV9 delivery of RNA-guided Cas9 nuclease effectively inactivated the pathogenic allele, albeit with dose-dependent toxicities, necessitating a narrow therapeutic window to maintain health. These preclinical studies demonstrate considerable potential for single-dose genetic therapies to correct or silence pathogenic variants and prevent the development of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Edición Génica , Animales , Ratones , Mutación Missense , Miocitos Cardíacos , ARN
6.
Front Cell Infect Microbiol ; 13: 1098457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814444

RESUMEN

Introduction: Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods: To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results: Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion: These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Miocitos Cardíacos/metabolismo , Enfermedad de Chagas/parasitología , Inmunidad Innata
7.
Genet Med ; 25(1): 143-150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260083

RESUMEN

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Asunto(s)
Microtia Congénita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congénita/genética , Oído/anomalías , Cara
8.
Nat Cardiovasc Res ; 2(10): 881-898, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38344303

RESUMEN

Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.

9.
Curr Protoc ; 2(10): e579, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36286606

RESUMEN

This protocol describes a robust pipeline for simultaneously analyzing multiple samples by single-nucleus (sn)RNA-seq. cDNA obtained from each single sample are labeled with the same lipid-coupled oligonucleotide barcode (10X Genomics). Nuclei from as many as 12 individual samples can be pooled together and simultaneously processed for cDNA library construction and subsequent DNA sequencing. While previous protocols using lipid-coupled oligonucleotide barcodes were optimized for analysis of samples consisting of viable cells, this protocol is optimized for analyses of quick-frozen cell samples. The protocol ensures efficient recovery of nuclei both by incorporating high sucrose buffered solutions and by including a tracking dye (trypan blue) during nuclei isolation. The protocol also describes a procedure for removing single nuclei 'artifacts' by removing cell debris prior to single nuclear fractionation. This protocol informs the use of computational tools for filtering poorly labeled nuclei and assigning sample identity using barcode unique molecular identifier (UMI) read counts percentages. The computational pipeline is applicable to either cultured or primary, fresh or frozen cells, regardless of their cell types and species. Overall, this protocol reduces batch effects and experimental costs while enhancing sample comparison. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Labeling cells with lipid oligo barcodes and generating multiplexed single-nucleus RNA-seq libraries Basic Protocol 2: Bioinformatic deconvolution of the multiplexed snRNAseq libraries.


Asunto(s)
Sacarosa , Azul de Tripano , ADN Complementario , Análisis de Secuencia de ARN/métodos , Oligonucleótidos , Lípidos/genética
10.
Science ; 377(6606): eabo1984, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926050

RESUMEN

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Análisis de la Célula Individual , Transcriptoma , Displasia Ventricular Derecha Arritmogénica/genética , Atlas como Asunto , Cardiomiopatía Dilatada/genética , Núcleo Celular/genética , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos , Humanos , RNA-Seq
11.
Proc Natl Acad Sci U S A ; 119(21): e2203928119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35584116

RESUMEN

Microtia is a congenital malformation that encompasses mild hypoplasia to complete loss of the external ear, or pinna. Although the contribution of genetic variation and environmental factors to microtia remains elusive, Amerindigenous populations have the highest reported incidence. Here, using both transmission disequilibrium tests and association studies in microtia trios (parents and affected child) and microtia cohorts enrolled in Latin America, we map an ∼10-kb microtia locus (odds ratio = 4.7; P = 6.78e-18) to the intergenic region between Roundabout 1 (ROBO1) and Roundabout 2 (ROBO2) (chr3: 78546526 to 78555137). While alleles at the microtia locus significantly increase the risk of microtia, their penetrance is low (<1%). We demonstrate that the microtia locus contains a polymorphic complex repeat element that is expanded in affected individuals. The locus is located near a chromatin loop region that regulates ROBO1 and ROBO2 expression in induced pluripotent stem cell­derived neural crest cells. Furthermore, we use single nuclear RNA sequencing to demonstrate ROBO1 and ROBO2 expression in both fibroblasts and chondrocytes of the mature human pinna. Because the microtia allele is enriched in Amerindigenous populations and is shared by some East Asian subjects with craniofacial malformations, we propose that both populations share a mutation that arose in a common ancestor prior to the ancient migration of Eurasian populations into the Americas and that the high incidence of microtia among Amerindigenous populations reflects the population bottleneck that occurred during the migration out of Eurasia.


Asunto(s)
Indio Americano o Nativo de Alaska , Microtia Congénita , Microtia Congénita/genética , Oído Externo , Efecto Fundador , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Indio Americano o Nativo de Alaska/genética , Proteínas Roundabout
12.
Am J Hum Genet ; 109(5): 961-966, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397206

RESUMEN

The well-established manifestation of mitochondrial mutations in functional cardiac disease (e.g., mitochondrial cardiomyopathy) prompted the hypothesis that mitochondrial DNA (mtDNA) sequence and/or copy number (mtDNAcn) variation contribute to cardiac defects in congenital heart disease (CHD). MtDNAcns were calculated and rare, non-synonymous mtDNA mutations were identified in 1,837 CHD-affected proband-parent trios, 116 CHD-affected singletons, and 114 paired cardiovascular tissue/blood samples. The variant allele fraction (VAF) of heteroplasmic variants in mitochondrial RNA from 257 CHD cardiovascular tissue samples was also calculated. On average, mtDNA from blood had 0.14 rare variants and 52.9 mtDNA copies per nuclear genome per proband. No variation with parental age at proband birth or CHD-affected proband age was seen. mtDNAcns in valve/vessel tissue (320 ± 70) were lower than in atrial tissue (1,080 ± 320, p = 6.8E-21), which were lower than in ventricle tissue (1,340 ± 280, p = 1.4E-4). The frequency of rare variants in CHD-affected individual DNA was indistinguishable from the frequency in an unaffected cohort, and proband mtDNAcns did not vary from those of CHD cohort parents. In both the CHD and the comparison cohorts, mtDNAcns were significantly correlated between mother-child, father-child, and mother-father. mtDNAcns among people with European (mean = 52.0), African (53.0), and Asian haplogroups (53.5) were calculated and were significantly different for European and Asian haplogroups (p = 2.6E-3). Variant heteroplasmic fraction (HF) in blood correlated well with paired cardiovascular tissue HF (r = 0.975) and RNA VAF (r = 0.953), which suggests blood HF is a reasonable proxy for HF in heart tissue. We conclude that mtDNA mutations and mtDNAcns are unlikely to contribute significantly to CHD risk.


Asunto(s)
ADN Mitocondrial , Cardiopatías Congénitas , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Cardiopatías Congénitas/genética , Humanos , Mitocondrias/genética , Mutación/genética
13.
Circ Genom Precis Med ; 14(5): e003389, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461741

RESUMEN

BACKGROUND: Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain. METHODS: Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay. RESULTS: Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%-95%) but poor sensitivity (15%-50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and -3 acceptor positions. CONCLUSIONS: Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.


Asunto(s)
Cardiomiopatía Dilatada/genética , Conectina/genética , Exones , Heterocigoto , Empalme del ARN , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
Curr Protoc ; 1(5): e132, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34043278

RESUMEN

Both single-cell RNA sequencing (scRNAseq) and single-nucleus RNA sequencing (snRNAseq) can be used to characterize the transcriptional profile of individual cells, and based on these transcriptional profiles, help define cell type distribution in mixed cell populations. However, scRNAseq analyses are confounded if some of the cells are large (>50 µm) or if some of cells adhere more tightly to some adjacent cells than to others. Further, single cell isolation for scRNAseq requires fresh tissue, which may not be available for human or animal model tissues. Additionally, the current enzymatic and mechanical methods for single-cell dissociation can lead to stress-induced transcriptional artifacts. Nuclei for snRNAseq, on the other hand, can be isolated from any cell, regardless of size, and from either fresh or frozen tissues, and compared to whole cells, they are more resistant to mechanical pressures and appear not to exhibit as many cell isolation-based transcriptional artifacts. Here, we describe a time- and cost-effective procedure to isolate nuclei from mammalian cells and tissues. The protocol incorporates steps to mechanically disrupt samples to release nuclei. Compared to conventional nuclei isolation protocols, the approach described here increases overall efficiency, eliminates risk of contaminant exposure, and reduces volumes of expensive reagents. A series of RNA quality control checks are also incorporated to ensure success and reduce costs of subsequent snRNAseq experiments. Nuclei isolated by this procedure can be separated on the 10× Genomics Chromium system for either snRNAseq and/or Single-Nucleus ATAC-Seq (snATAC-Seq), and is also compatible with other single cell platforms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Sample preparation and quality control check via RNA Isolation and Analysis Basic Protocol 2: Nuclei Isolation.


Asunto(s)
Núcleo Celular , Núcleo Solitario , Animales , Separación Celular , Modelos Animales de Enfermedad , Humanos , Análisis de Secuencia de ARN
15.
Elife ; 92020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33054971

RESUMEN

Damaging GATA6 variants cause cardiac outflow tract defects, sometimes with pancreatic and diaphragmic malformations. To define molecular mechanisms for these diverse developmental defects, we studied transcriptional and epigenetic responses to GATA6 loss of function (LoF) and missense variants during cardiomyocyte differentiation of isogenic human induced pluripotent stem cells. We show that GATA6 is a pioneer factor in cardiac development, regulating SMYD1 that activates HAND2, and KDR that with HAND2 orchestrates outflow tract formation. LoF variants perturbed cardiac genes and also endoderm lineage genes that direct PDX1 expression and pancreatic development. Remarkably, an exon 4 GATA6 missense variant, highly associated with extra-cardiac malformations, caused ectopic pioneer activities, profoundly diminishing GATA4, FOXA1/2, and PDX1 expression and increasing normal retinoic acid signaling that promotes diaphragm development. These aberrant epigenetic and transcriptional signatures illuminate the molecular mechanisms for cardiovascular malformations, pancreas and diaphragm dysgenesis that arise in patients with distinct GATA6 variants.


Asunto(s)
Diafragma/crecimiento & desarrollo , Factor de Transcripción GATA6/genética , Corazón/crecimiento & desarrollo , Células Madre Pluripotentes Inducidas/metabolismo , Páncreas/crecimiento & desarrollo , Diferenciación Celular/genética , Epigénesis Genética/genética , Perfilación de la Expresión Génica , Humanos , Mutación Missense/genética , Miocitos Cardíacos/metabolismo
16.
Nature ; 588(7838): 466-472, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32971526

RESUMEN

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Asunto(s)
Miocardio/citología , Análisis de la Célula Individual , Transcriptoma , Adipocitos/clasificación , Adipocitos/metabolismo , Adulto , Enzima Convertidora de Angiotensina 2/análisis , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Epitelio , Femenino , Fibroblastos/clasificación , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Atrios Cardíacos/anatomía & histología , Atrios Cardíacos/citología , Atrios Cardíacos/inervación , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/inervación , Homeostasis/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocitos Cardíacos/clasificación , Miocitos Cardíacos/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Pericitos/clasificación , Pericitos/metabolismo , Receptores de Coronavirus/análisis , Receptores de Coronavirus/genética , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células del Estroma/clasificación , Células del Estroma/metabolismo
17.
Nat Genet ; 52(8): 769-777, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32601476

RESUMEN

A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.


Asunto(s)
Variación Genética/genética , Cardiopatías Congénitas/genética , ARN no Traducido/genética , Adolescente , Adulto , Animales , Femenino , Predisposición Genética a la Enfermedad/genética , Genómica , Corazón/fisiología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , Proteínas de Unión al ARN/genética , Transcripción Genética/genética , Adulto Joven
18.
JCI Insight ; 5(15)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603312

RESUMEN

The bromodomain and extraterminal (BET) family comprises epigenetic reader proteins that are important regulators of inflammatory and hypertrophic gene expression in the heart. We previously identified the activation of proinflammatory gene networks as a key early driver of dilated cardiomyopathy (DCM) in transgenic mice expressing a mutant form of phospholamban (PLNR9C) - a genetic cause of DCM in humans. We hypothesized that BETs coactivate this inflammatory process, representing a critical node in the progression of DCM. To test this hypothesis, we treated PLNR9C or age-matched WT mice longitudinally with the small molecule BET bromodomain inhibitor JQ1 or vehicle. BET inhibition abrogated adverse cardiac remodeling, reduced cardiac fibrosis, and prolonged survival in PLNR9C mice by inhibiting expression of proinflammatory gene networks at all stages of disease. Specifically, JQ1 had profound effects on proinflammatory gene network expression in cardiac fibroblasts, while having little effect on gene expression in cardiomyocytes. Cardiac fibroblast proliferation was also substantially reduced by JQ1. Mechanistically, we demonstrated that BRD4 serves as a direct and essential regulator of NF-κB-mediated proinflammatory gene expression in cardiac fibroblasts. Suppressing proinflammatory gene expression via BET bromodomain inhibition could be a novel therapeutic strategy for chronic DCM in humans.


Asunto(s)
Azepinas/farmacología , Proteínas de Unión al Calcio/fisiología , Cardiomiopatía Dilatada/prevención & control , Fibrosis/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Animales , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Genome Med ; 12(1): 42, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349777

RESUMEN

BACKGROUND: The contribution of somatic mosaicism, or genetic mutations arising after oocyte fertilization, to congenital heart disease (CHD) is not well understood. Further, the relationship between mosaicism in blood and cardiovascular tissue has not been determined. METHODS: We developed a new computational method, EM-mosaic (Expectation-Maximization-based detection of mosaicism), to analyze mosaicism in exome sequences derived primarily from blood DNA of 2530 CHD proband-parent trios. To optimize this method, we measured mosaic detection power as a function of sequencing depth. In parallel, we analyzed our cohort using MosaicHunter, a Bayesian genotyping algorithm-based mosaic detection tool, and compared the two methods. The accuracy of these mosaic variant detection algorithms was assessed using an independent resequencing method. We then applied both methods to detect mosaicism in cardiac tissue-derived exome sequences of 66 participants for which matched blood and heart tissue was available. RESULTS: EM-mosaic detected 326 mosaic mutations in blood and/or cardiac tissue DNA. Of the 309 detected in blood DNA, 85/97 (88%) tested were independently confirmed, while 7/17 (41%) candidates of 17 detected in cardiac tissue were confirmed. MosaicHunter detected an additional 64 mosaics, of which 23/46 (50%) among 58 candidates from blood and 4/6 (67%) of 6 candidates from cardiac tissue confirmed. Twenty-five mosaic variants altered CHD-risk genes, affecting 1% of our cohort. Of these 25, 22/22 candidates tested were confirmed. Variants predicted as damaging had higher variant allele fraction than benign variants, suggesting a role in CHD. The estimated true frequency of mosaic variants above 10% mosaicism was 0.14/person in blood and 0.21/person in cardiac tissue. Analysis of 66 individuals with matched cardiac tissue available revealed both tissue-specific and shared mosaicism, with shared mosaics generally having higher allele fraction. CONCLUSIONS: We estimate that ~ 1% of CHD probands have a mosaic variant detectable in blood that could contribute to cardiac malformations, particularly those damaging variants with relatively higher allele fraction. Although blood is a readily available DNA source, cardiac tissues analyzed contributed ~ 5% of somatic mosaic variants identified, indicating the value of tissue mosaicism analyses.


Asunto(s)
Cardiopatías Congénitas/genética , Programas Informáticos , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Mosaicismo , Mutación Puntual , Adulto Joven
20.
Sci Transl Med ; 11(476)2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674652

RESUMEN

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Mutación/genética , Miosinas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Haploinsuficiencia , Humanos , Ratones , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Fenotipo , ortoaminobenzoatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...