Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6307, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728601

RESUMEN

It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.


Asunto(s)
Tronco Encefálico/metabolismo , Conducta Alimentaria/fisiología , Proteínas de Homeodominio/metabolismo , Maxilares/fisiología , Bulbo Raquídeo/metabolismo , Neuronas Motoras/metabolismo , Lengua/fisiología , Factores de Transcripción/metabolismo , Potenciales de Acción , Animales , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Noqueados , Formación Reticular/metabolismo , Factores de Transcripción/genética
2.
Nature ; 541(7636): 165-166, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28002406

Asunto(s)
Pulmón , Respiración , Humanos
3.
Elife ; 42015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25866925

RESUMEN

Maintaining constant CO2 and H(+) concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dióxido de Carbono/farmacología , Proteínas de Homeodominio/genética , Neuronas/efectos de los fármacos , Respiración/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dióxido de Carbono/metabolismo , Embrión de Mamíferos , Expresión Génica , Proteínas de Homeodominio/metabolismo , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Estimulación Luminosa , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Protones , Centro Respiratorio/citología , Centro Respiratorio/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Transcripción/metabolismo
4.
Genesis ; 51(7): 506-14, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23592597

RESUMEN

Phox2b is a transcription factor expressed in the central and peripheral neurons that control cardiovascular, respiratory, and digestive functions and essential for their development. Several populations known or suspected to regulate visceral functions express Phox2b in the developing hindbrain. Extensive cell migration and lack of suitable markers have greatly hampered studying their development. Reasoning that intersectional fate mapping may help to overcome these impediments, we have generated a BAC transgenic mouse line, P2b::FLPo, which expresses codon-optimized FLP recombinase in Phox2b expressing cells. By partnering the P2b::FLPo with the FLP-responsive RC::Fela allele, we show that FLP recombination switches on lineage tracers in the cells that express or have expressed Phox2b, permanently marking them for study across development. Taking advantage of the dual-recombinase feature of RC::Fela, we further show that the P2b::FLPo transgene can be partnered with Lbx1(Cre) as Cre driver to generate triple transgenics in which neurons having a history of both Phox2b and Lbx1 expression are specifically labeled. Hence, the P2b::FLPo line when partnered with a suitable Cre driver provides a tool for tracking and accessing genetically subsets of Phox2b-expressing neuronal populations, which has not been possible by Cre-mediated recombination alone.


Asunto(s)
ADN Nucleotidiltransferasas/genética , Proteínas de Homeodominio/genética , Ratones Transgénicos , Proteínas Musculares/genética , Neuronas/fisiología , Factores de Transcripción/genética , Animales , ADN Nucleotidiltransferasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Proteínas de Homeodominio/metabolismo , Mesencéfalo/embriología , Mesencéfalo/fisiología , Ratones , Proteínas Musculares/metabolismo , Especificidad de Órganos , Recombinación Genética , Rombencéfalo/embriología , Rombencéfalo/fisiología , Factores de Transcripción/metabolismo , Transgenes
5.
J Neurosci ; 31(36): 12880-8, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21900566

RESUMEN

Breathing is a spontaneous, rhythmic motor behavior critical for maintaining O(2), CO(2), and pH homeostasis. In mammals, it is generated by a neuronal network in the lower brainstem, the respiratory rhythm generator (Feldman et al., 2003). A century-old tenet in respiratory physiology posits that the respiratory chemoreflex, the stimulation of breathing by an increase in partial pressure of CO(2) in the blood, is indispensable for rhythmic breathing. Here we have revisited this postulate with the help of mouse genetics. We have engineered a conditional mouse mutant in which the toxic PHOX2B(27Ala) mutation that causes congenital central hypoventilation syndrome in man is targeted to the retrotrapezoid nucleus, a site essential for central chemosensitivity. The mutants lack a retrotrapezoid nucleus and their breathing is not stimulated by elevated CO(2) at least up to postnatal day 9 and they barely respond as juveniles, but nevertheless survive, breathe normally beyond the first days after birth, and maintain blood PCO(2) within the normal range. Input from peripheral chemoreceptors that sense PO(2) in the blood appears to compensate for the missing CO(2) response since silencing them by high O(2) abolishes rhythmic breathing. CO(2) chemosensitivity partially recovered in adulthood. Hence, during the early life of rodents, the excitatory input normally afforded by elevated CO(2) is dispensable for life-sustaining breathing and maintaining CO(2) homeostasis in the blood.


Asunto(s)
Dióxido de Carbono/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Respiración/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Envejecimiento/fisiología , Alelos , Animales , Análisis de los Gases de la Sangre , Tronco Encefálico/embriología , Tronco Encefálico/fisiología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Fenómenos Electrofisiológicos , Exones/genética , Femenino , Hipoventilación/congénito , Hipoventilación/fisiopatología , Inmunohistoquímica , Ratones , Mutación/fisiología , Oxígeno/sangre , Pletismografía , Embarazo , Apnea Central del Sueño/fisiopatología , Médula Espinal/embriología , Médula Espinal/fisiología , Sobrevida
6.
Semin Cell Dev Biol ; 21(8): 814-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20691277

RESUMEN

Neural networks in the hindbrain generate the pattern of motor activity that sustains breathing in mammals. Over the last years, increasing knowledge of the development and the molecular signatures of different classes of hindbrain neurons has led to a better definition of the neuronal circuits essential for adequate breathing. Here, we review how, on the basis of earlier clinical and genetic studies of a human respiratory disease, evidence from neurophysiology and mouse genetics has led to the conclusion that a restricted number of neuronal types expressing and depending on the Phox2b transcription factor play crucial roles in the control of respiration. Collectively, these studies argue for the paramount importance of a small group of neurons in the rostral medulla termed the retrotrapezoid nucleus (RTN) both for the vital drive to breathe afforded by CO(2) detection in the brain and for the pacing of respiratory rhythm before birth. RTN neurons are now among the molecularly and developmentally best defined types of respiratory neurons. Such knowledge will enable new genetic approaches towards elucidating how respiratory networks are assembled and configured in normal and pathological conditions.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Respiración , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Hipoventilación/congénito , Hipoventilación/genética , Hipoventilación/metabolismo , Ratones , Neuronas/citología , Neuronas/fisiología , Apnea Central del Sueño/genética , Apnea Central del Sueño/metabolismo
7.
Respir Physiol Neurobiol ; 173(3): 312-21, 2010 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-20307691

RESUMEN

The response to increased P(CO(2)) in the brain is an essential drive to breathe and required for CO(2) and pH homeostasis in the blood, but where and how CO(2) is sensed are still contentious issues. Here, we review evidence from mouse and human genetics that argue for the crucial role in CO(2) chemosensitivity of a limited set of central neurons that express the Phox2b transcription factor and are disabled by Phox2b mutations. A common trait of different Phox2b mutations that impair CO(2) responsiveness in the embryo and respiration in neonates is the depletion of Phox2b-expressing neurons in the retrotrapezoid nucleus, providing genetic evidence for their importance for proper breathing and central chemosensitivity at birth.


Asunto(s)
Encéfalo/fisiología , Células Quimiorreceptoras/metabolismo , Proteínas de Homeodominio/genética , Neuronas/metabolismo , Fenómenos Fisiológicos Respiratorios , Factores de Transcripción/genética , Animales , Células Quimiorreceptoras/citología , Humanos , Ratones , Mutación , Neuronas/citología
8.
Proc Natl Acad Sci U S A ; 107(5): 2066-71, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133851

RESUMEN

The wiring of the nervous system arises from extensive directional migration of neuronal cell bodies and growth of processes that, somehow, end up forming functional circuits. Thus far, this feat of biological engineering appears to rely on sequences of pathfinding decisions upon local cues, each with little relationship to the anatomical and physiological outcome. Here, we uncover a straightforward cellular mechanism for circuit building whereby a neuronal type directs the development of its future partners. We show that visceral afferents of the head (that innervate taste buds) provide a scaffold for the establishment of visceral efferents (that innervate salivatory glands and blood vessels). In embryological terms, sensory neurons derived from an epibranchial placode--that we show to develop largely independently from the neural crest--guide the directional outgrowth of hindbrain visceral motoneurons and control the formation of neural crest-derived parasympathetic ganglia.


Asunto(s)
Región Branquial/embriología , Ganglios/embriología , Cresta Neural/embriología , Animales , Región Branquial/metabolismo , Femenino , Ganglios/metabolismo , Ganglios Parasimpáticos/embriología , Ganglios Parasimpáticos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Cresta Neural/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Embarazo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(5): 2325-30, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133877

RESUMEN

Task2 K(+) channel expression in the central nervous system is surprisingly restricted to a few brainstem nuclei, including the retrotrapezoid (RTN) region. All Task2-positive RTN neurons were lost in mice bearing a Phox2b mutation that causes the human congenital central hypoventilation syndrome. In plethysmography, Task2(-/-) mice showed disturbed chemosensory function with hypersensitivity to low CO(2) concentrations, leading to hyperventilation. Task2 probably is needed to stabilize the membrane potential of chemoreceptive cells. In addition, Task2(-/-) mice lost the long-term hypoxia-induced respiratory decrease whereas the acute carotid-body-mediated increase was maintained. The lack of anoxia-induced respiratory depression in the isolated brainstem-spinal cord preparation suggested a central origin of the phenotype. Task2 activation by reactive oxygen species generated during hypoxia could silence RTN neurons, thus contributing to respiratory depression. These data identify Task2 as a determinant of central O(2) chemoreception and demonstrate that this phenomenon is due to the activity of a small number of neurons located at the ventral medullary surface.


Asunto(s)
Dióxido de Carbono/fisiología , Oxígeno/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Centro Respiratorio/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/patología , Tronco Encefálico/fisiología , Tronco Encefálico/fisiopatología , Células Quimiorreceptoras/patología , Células Quimiorreceptoras/fisiología , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Pletismografía Total , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/genética , Embarazo , Fenómenos Fisiológicos Respiratorios , Apnea Central del Sueño/etiología , Apnea Central del Sueño/genética , Apnea Central del Sueño/fisiopatología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología
10.
J Neurosci ; 29(47): 14836-46, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19940179

RESUMEN

The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2-, neurokinin1 receptor-, and Atoh1-expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic tools. We generated two conditional Phox2b mutations, which target different subsets of Phox2b-expressing cells, but have in common a massive depletion of RTN neurons. In both conditional mutants as well as in the previously described Phox2b(27Ala) mutants, in which the RTN is also compromised, the respiratory-like rhythmic activity normally seen in the parafacial region of fetal brainstem preparations was completely abrogated. Rhythmic motor bursts were recorded from the phrenic nerve roots in the mutants, but their frequency was markedly reduced. Both the rhythmic activity in the RTN region and the phrenic nerve discharges responded to a low pH challenge in control, but not in the mutant embryos. Together, our results provide genetic evidence for the essential role of the Phox2b-expressing RTN neurons both in establishing a normal respiratory rhythm before birth and in providing chemosensory drive.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Proteínas de Homeodominio/genética , Respiración , Centro Respiratorio/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/genética , Potenciales de Acción/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , Nervio Frénico/fisiología , Centro Respiratorio/embriología , Centro Respiratorio/fisiopatología , Rombencéfalo/embriología , Rombencéfalo/fisiopatología
11.
Philos Trans R Soc Lond B Biol Sci ; 364(1529): 2477-83, 2009 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-19651649

RESUMEN

In the last few years, elucidation of the architecture of breathing control centres has reached the cellular level. This has been facilitated by increasing knowledge of the molecular signatures of various classes of hindbrain neurons. Here, we review the advances achieved by studying the homeodomain factor Phox2b, a transcriptional determinant of neuronal identity in the central and peripheral nervous systems. Evidence from human genetics, neurophysiology and mouse reverse genetics converges to implicate a small population of Phox2b-dependent neurons, located in the retrotrapezoid nucleus, in the detection of CO(2), which is a paramount source of the 'drive to breathe'. Moreover, the same and other studies suggest that an overlapping or identical neuronal population, the parafacial respiratory group, might contribute to the respiratory rhythm at least in some circumstances, such as for the initiation of breathing following birth. Together with the previously established Phox2b dependency of other respiratory neurons (which we review briefly here), our new data highlight a key role of this transcription factor in setting up the circuits for breathing automaticity.


Asunto(s)
Dióxido de Carbono/metabolismo , Proteínas de Homeodominio/metabolismo , Hipoventilación/metabolismo , Neuronas/metabolismo , Mecánica Respiratoria/fisiología , Rombencéfalo/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Homeodominio/genética , Humanos , Ratones , Mutación/genética , Rombencéfalo/citología , Factores de Transcripción/genética
12.
Respir Physiol Neurobiol ; 168(1-2): 125-32, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19712905

RESUMEN

Phox2b is a master regulator of visceral reflex circuits. Its role in the control of respiration has been highlighted by the identification of heterozygous PHOX2B mutations as the cause of Central Congenital Hypoventilation Syndrome (CCHS), a rare disease defined by the lack of CO(2) responsiveness and of breathing automaticity in sleep. Phox2b(27Ala/+) mice that bear a frequent CCHS-causing mutation do not respond to hypercapnia and die in the first hour after birth from central apnoea. They are therefore a reliable animal model for CCHS. Neurons of the retrotrapezoïd nucleus/parafacial respiratory group (RTN/pFRG) were found severely depleted in these mice and no other neuronal loss could be identified. Physiological experiments show that RTN/pFRG neurons are crucial to driving proper breathing at birth and are necessary for central chemoreception and the generation of a normal respiratory rhythm. To date, the reason for the selective vulnerability of RTN/pFRG neurons to PHOX2B protein dysfunction remains unexplained.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Mutación/genética , Respiración/genética , Apnea Central del Sueño/genética , Apnea Central del Sueño/fisiopatología , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Enfermedades del Sistema Nervioso Autónomo/genética , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/fisiología , Humanos , Lactante , Recién Nacido , Ratones , Oxígeno/metabolismo , Péptidos/genética , Centro Respiratorio/patología , Apnea Central del Sueño/congénito , Apnea Central del Sueño/patología , Temperatura , Factores de Transcripción/deficiencia
13.
Hum Mutat ; 30(2): E421-31, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19058226

RESUMEN

A wide range of autonomic dysfunctions, i.e. Central Hypoventilation Syndromes, Hirschsprung disease and Tumours of the Sympathetic Nervous System have been ascribed to heterozygous PHOX2B mutations in man. The PHOX2B mutations reported include polyalanine expansions in a 20 alanines tract, missense, frameshift mutations and nonsense mutation. Some genotype/phenotype correlations have been drawn, but the molecular mechanism(s) underlying them remain(s) unclear. So far, loss-of-function, gain-of-function and dominant negative effects have been proposed as disease-causing mechanisms for polyalanine expansions. Indeed, mutant with an expanded polyalanine tract result in decreased transactivation of known target genes and protein misfolding leading to oligomerisation in vitro for all expansions and to cytoplasmic protein aggregation for longer expansions. We extended the molecular studies to other non-polyalanine expansion mutations and show that most PHOX2B protein mutants oligomerize even in the absence of the normal 20 alanines tract. Conversely, a premature stop codon mutation in a CHS patient leads to the production of an N-terminally truncated protein by re-initiation of translation that does not form oligomers. Therefore, PHOX2B misfolding is not the only mechanism leading to dysfunction of the ventilatory autonomic system.


Asunto(s)
Proteínas de Homeodominio/genética , Hipoventilación/congénito , Hipoventilación/genética , Mutación/genética , Péptidos/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Cromatografía en Gel , Codón/genética , Codón sin Sentido , Mutación del Sistema de Lectura , Células HeLa , Proteínas de Homeodominio/química , Humanos , Luciferasas/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Regiones Promotoras Genéticas/genética , Multimerización de Proteína , Estabilidad Proteica , Factores de Transcripción/química , Activación Transcripcional/genética
14.
Neural Dev ; 3: 14, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18565209

RESUMEN

BACKGROUND: Branchiomotor neurons comprise an important class of cranial motor neurons that innervate the branchial-arch-derived muscles of the face, jaw and neck. They arise in the ventralmost progenitor domain of the rhombencephalon characterized by expression of the homeodomain transcription factors Nkx2.2 and Phox2b. Phox2b in particular plays a key role in the specification of branchiomotor neurons. In its absence, generic neuronal differentiation is defective in the progenitor domain and no branchiomotor neurons are produced. Conversely, ectopic expression of Phox2b in spinal regions of the neural tube promotes cell cycle exit and neuronal differentiation and, at the same time, induces genes and an axonal phenotype characteristic for branchiomotor neurons. How Phox2b exerts its pleiotropic functions, both as a proneural gene and a neuronal subtype determinant, has remained unknown. RESULTS: To gain further insights into the genetic program downstream of Phox2b, we searched for novel Phox2b-regulated genes by cDNA microarray analysis of facial branchiomotor neuron precursors from heterozygous and homozygous Phox2b mutant embryos. We selected for functional studies the genes encoding the axonal growth promoter Gap43, the Wnt antagonist Sfrp1 and the transcriptional regulator Sox13, which were not previously suspected to play roles downstream of Phox2b and whose expression was affected by Phox2b misexpression in the spinal cord. While Gap43 did not produce an obvious phenotype when overexpressed in the neural tube, Sfrp1 induced the interneuron marker Lhx1,5 and Sox13 inhibited neuronal differentiation. We then tested whether Sfrp1 and Sox13, which are down-regulated by Phox2b in the facial neuron precursors, would antagonize some aspects of Phox2b activity. Co-expression of Sfrp1 prevented Phox2b from repressing Lhx1,5 and alleviated the commissural axonal phenotype. When expressed together with Sox13, Phox2b was still able to promote cell cycle exit and neuronal differentiation, but the cells failed to relocate to the mantle layer and to extinguish the neural stem cell marker Sox2. CONCLUSION: Our results suggest novel roles for Sfrp1 and Sox13 in neuronal subtype specification and generic neuronal differentiation, respectively, and indicate that down-regulation of Sfrp1 and Sox13 are essential aspects of the genetic program controlled by Phox2b in cranial motoneurons.


Asunto(s)
Región Branquial , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Neuronas Motoras/fisiología , Células Madre/fisiología , Factores de Transcripción/genética , Animales , Autoantígenos/genética , Región Branquial/citología , Región Branquial/embriología , Región Branquial/fisiología , Embrión de Pollo , Pollos , Nervios Craneales/citología , Nervios Craneales/embriología , Nervios Craneales/fisiología , Femenino , Proteína GAP-43/genética , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteína Homeobox Nkx-2.2 , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/fisiología , Embarazo , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/fisiología , Células Madre/citología
15.
Hum Mutat ; 29(5): 770, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18407552

RESUMEN

Homozygosity for a dominant allele is relatively rare and preferentially observed in communities with high inbreeding. According to the definition of true dominance, similar phenotypes should be observed in patients heterozygous and homozygous for a dominant mutation. However, the homozygous phenotype usually tends to be more severe than the heterozygous one. In these cases, the wild-type and mutant alleles are semi-dominant. Here we report a patient with a Congenital Central Hypoventilation Syndrome (CCHS) phenotype and homozygosity for a PHOX2B gene mutation leading to an alanine expansion shorter than the threshold hitherto observed in CCHS patients with a heterozygous mutation. This observation adds the concept of mutational threshold per se to the discussion about dominant and recessive alleles.


Asunto(s)
Proteínas de Homeodominio/genética , Homocigoto , Mutación , Apnea Central del Sueño/genética , Factores de Transcripción/genética , Alanina/genética , Alelos , Femenino , Genes Dominantes , Humanos , Recién Nacido , Masculino , Linaje
16.
Proc Natl Acad Sci U S A ; 105(3): 1067-72, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18198276

RESUMEN

Breathing is maintained and controlled by a network of neurons in the brainstem that generate respiratory rhythm and provide regulatory input. Central chemoreception, the mechanism for CO(2) detection that provides an essential stimulatory input, is thought to involve neurons located near the medullary surface, whose nature is controversial. Good candidates are serotonergic medullary neurons and glutamatergic neurons in the parafacial region. Here, we show that mice bearing a mutation in Phox2b that causes congenital central hypoventilation syndrome in humans breathe irregularly, do not respond to an increase in CO(2), and die soon after birth from central apnea. They specifically lack Phox2b-expressing glutamatergic neurons located in the parafacial region, whereas other sites known or supposed to be involved in the control of breathing are anatomically normal. These data provide genetic evidence for the essential role of a specific population of medullary interneurons in driving proper breathing at birth and will be instrumental in understanding the etiopathology of congenital central hypoventilation syndrome.


Asunto(s)
Dióxido de Carbono/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Apnea Central del Sueño/metabolismo , Apnea Central del Sueño/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Enfermedades del Sistema Nervioso/genética , Sensibilidad y Especificidad , Apnea Central del Sueño/genética , Apnea Central del Sueño/fisiopatología
17.
Dev Biol ; 303(2): 687-702, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17208219

RESUMEN

What causes motor neurons to project into the periphery is not well understood. We here show that forced expression of the homeodomain protein Phox2b, shown previously to be necessary and sufficient for branchio-visceromotor neuron development, and of its paralogue Phox2a imposes a branchiomotor-like axonal phenotype in the spinal cord. Many Phox2-transfected neurons, whose axons would normally stay within the confines of the neural tube, now project into the periphery. Once outside the neural tube, a fraction of the ectopic axons join the spinal accessory nerve, a branchiomotor nerve which, as shown here, does not develop in the absence of Phox2b. Explant studies show that the axons of Phox2-transfected neurons need attractive cues to leave the neural tube and that their outgrowth is promoted by tissues, to which branchio-visceromotor fibers normally grow. Hence, Phox2 expression is a key step in determining the peripheral axonal phenotype and thus the decision to stay within the neural tube or to project out of it.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Nervio Accesorio/citología , Nervio Accesorio/embriología , Nervio Accesorio/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Mutantes , Ratones Transgénicos , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Fenotipo , Factores de Transcripción/genética , Transfección
18.
Proc Natl Acad Sci U S A ; 103(23): 8727-32, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16735475

RESUMEN

The craniate head is innervated by cranial sensory and motor neurons. Cranial sensory neurons stem from the neurogenic placodes and neural crest and are seen as evolutionary innovations crucial in fulfilling the feeding and respiratory needs of the craniate "new head." In contrast, cranial motoneurons that are located in the hindbrain and motorize the head have an unclear phylogenetic status. Here we show that these motoneurons are in fact homologous to the motoneurons of the sessile postmetamorphic form of ascidians. The motoneurons of adult Ciona intestinalis, located in the cerebral ganglion and innervating muscles associated with the huge "branchial basket," express the transcription factors CiPhox2 and CiTbx20, whose vertebrate orthologues collectively define cranial motoneurons of the branchiovisceral class. Moreover, Ciona's postmetamorphic motoneurons arise from a hindbrain set aside during larval life and defined as such by its position (caudal to the prosensephalic sensory vesicle) and coexpression of CiPhox2 and CiHox1, whose orthologues collectively mark the vertebrate hindbrain. These data unveil that the postmetamorphic ascidian brain, assumed to be a derived feature, in fact corresponds to the vertebrate hindbrain and push back the evolutionary origin of cranial nerves to before the origin of craniates.


Asunto(s)
Ciona intestinalis/citología , Cabeza/inervación , Neuronas Motoras/citología , Animales , Ciona intestinalis/embriología , Ciona intestinalis/crecimiento & desarrollo , Embrión no Mamífero/citología , Ganglión/metabolismo , Proteínas de Homeodominio/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica , Ratones , Datos de Secuencia Molecular , Proteínas de Dominio T Box/metabolismo
19.
EMBO J ; 24(24): 4392-403, 2005 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-16319924

RESUMEN

The paralogous paired-like homeobox genes Phox2a and Phox2b are involved in the development of specific neural subtypes in the central and peripheral nervous systems. The different phenotypes of Phox2 knockout mutants, together with their asynchronous onset of expression, prompted us to generate two knock-in mutant mice, in which Phox2a is replaced by the Phox2b coding sequence, and vice versa. Our results indicate that Phox2a and Phox2b are not functionally equivalent, as only Phox2b can fulfill the role of Phox2a in the structures that depend on both genes. Furthermore, we demonstrate unique roles of Phox2 genes in the differentiation of specific motor neurons. Whereas the oculomotor and the trochlear neurons require Phox2a for their proper development, the migration of the facial branchiomotor neurons depends on Phox2b. Therefore, our analysis strongly indicates that biochemical differences between the proteins rather than temporal regulation of their expression account for the specific function of each paralogue.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/fisiología , Neuronas/metabolismo , Factores de Transcripción/fisiología , Alelos , Animales , Diferenciación Celular , Movimiento Celular , ADN Complementario/metabolismo , Ganglios/metabolismo , Proteínas de Homeodominio/metabolismo , Homocigoto , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Neuronas Motoras/metabolismo , Mutación , Nervio Oculomotor/metabolismo , Fenotipo , Unión Proteica , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Nervio Troclear/metabolismo , beta-Galactosidasa/metabolismo
20.
Hum Mol Genet ; 14(23): 3697-708, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16249188

RESUMEN

Heterozygous mutations of the PHOX2B gene account for a broad variety of disorders of the autonomic nervous system, either isolated or combined, including congenital central hypoventilation syndrome (CCHS), tumours of the sympathetic nervous system and Hirschsprung disease. In CCHS, the prevalent mutation is an expansion of a 20-alanine stretch ranging from +5 to +13 alanines, whereas frameshift and missense mutations are found occasionally. To determine the molecular basis of impaired PHOX2B function, we assayed the transactivation and DNA binding properties of wild-type and mutant PHOX2B proteins. Furthermore, we investigated aggregate formation by proteins with polyalanine tract expansions ranging from +5 to +13 alanines using immunofluorescence of transfected cells and gel filtration of in vitro translated proteins. We found that transactivation of the dopamine beta-hydroxylase promoter by PHOX2B proteins with frameshift and missense mutations was abolished or severely curtailed, as was in vitro DNA binding although the proteins localized to the nucleus. The transactivation potential of proteins with polyalanine tract expansions declined with increasing length of the polyalanine stretch, and DNA binding was affected for an expansion of +9 alanines and above. Cytoplasmic aggregation in transfected cells was only observed for the longest expansions, whereas even the short expansion mutants were prone to form multimers in vitro. Such a tendency to protein misfolding could explain loss of transactivation for alanine expansion mutations. However, additional mechanisms such as toxic gain-of-function may play a role in the pathogenic process.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/metabolismo , Mutación del Sistema de Lectura , Proteínas de Homeodominio/metabolismo , Cuerpos de Inclusión/metabolismo , Mutación Missense , Péptidos/genética , Factores de Transcripción/metabolismo , Animales , Enfermedades del Sistema Nervioso Autónomo/genética , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , ADN/metabolismo , Análisis Mutacional de ADN , Dopamina beta-Hidroxilasa/genética , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/genética , Humanos , Ratones , Mutación , Regiones Promotoras Genéticas/genética , Factores de Transcripción/análisis , Factores de Transcripción/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...