Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 30570, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27484850

RESUMEN

Spatially targeted, genetically-specific strategies for sustained inhibition of nociceptors may help transform pain science and clinical management. Previous optogenetic strategies to inhibit pain have required constant illumination, and chemogenetic approaches in the periphery have not been shown to inhibit pain. Here, we show that the step-function inhibitory channelrhodopsin, SwiChR, can be used to persistently inhibit pain for long periods of time through infrequent transdermally delivered light pulses, reducing required light exposure by >98% and resolving a long-standing limitation in optogenetic inhibition. We demonstrate that the viral expression of the hM4D receptor in small-diameter primary afferent nociceptor enables chemogenetic inhibition of mechanical and thermal nociception thresholds. Finally, we develop optoPAIN, an optogenetic platform to non-invasively assess changes in pain sensitivity, and use this technique to examine pharmacological and chemogenetic inhibition of pain.


Asunto(s)
Channelrhodopsins/genética , Clozapina/análogos & derivados , Optogenética/métodos , Dolor/tratamiento farmacológico , Dolor/radioterapia , Animales , Células Cultivadas , Clozapina/administración & dosificación , Clozapina/uso terapéutico , Terapia Combinada , Modelos Animales de Enfermedad , Terapia por Luz de Baja Intensidad , Ratones , Nocicepción
2.
J Neurophysiol ; 97(3): 2059-66, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17093115

RESUMEN

Although oxidative stress and reactive oxygen species generation is typically associated with localized neuronal injury, reactive oxygen species have also recently been shown to act as a physiological signal in neuronal plasticity. Here we define an essential role for reactive oxygen species as a critical stimulus for cardiorespiratory reflex responses to acute episodic hypoxia in the brain stem. To examine central cardiorespiratory responses to episodic hypoxia, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and synaptic neurotransmission to cardioinhibitory vagal neurons. We show that whereas continuous hypoxia does not stimulate excitatory neurotransmission to cardioinhibitory vagal neurons, acute intermittent hypoxia of equivalent duration incrementally recruits an inspiratory-evoked excitatory neurotransmission to cardioinhibitory vagal neurons during intermittent hypoxia. This recruitment was dependent on the generation of reactive oxygen species. Further, we demonstrate that reactive oxygen species are incrementally generated in glutamatergic neurons in the ventrolateral medulla during intermittent hypoxia. These results suggest a neurochemical basis for the pronounced bradycardia that protects the heart against injury during intermittent hypoxia and demonstrates a novel role of reactive oxygen species in the brain stem.


Asunto(s)
Hipoxia/patología , Inhalación/fisiología , Bulbo Raquídeo/citología , Red Nerviosa/fisiopatología , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Antagonistas del GABA/farmacología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glicinérgicos/farmacología , Técnicas In Vitro , Inhalación/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Oxígeno/farmacología , Técnicas de Placa-Clamp/métodos , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Estricnina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA