Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236087

RESUMEN

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

2.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586918

RESUMEN

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

4.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243269

RESUMEN

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

5.
Rev Sci Instrum ; 92(4): 044708, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243427

RESUMEN

We describe a method of analyzing gate profile data for ultrafast x-ray imagers that allows pixel-by-pixel determination of temporal sensitivity in the presence of substantial background oscillations. With this method, systematic timing errors in gate width and gate arrival time of up to 1 ns (in a 2 ns wide gate) can be removed. In-sensor variations in gate arrival and gate width are observed, with variations in each up to 0.5 ns. This method can be used to estimate the coarse timing of the sensor, even if errors up to several ns are present.

6.
Nature ; 589(7843): 532-535, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33505034

RESUMEN

Carbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth's core1-3. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets4,5. By compressing solid carbon to 2 terapascals (20 million atmospheres; more than five times the pressure at Earth's core) using ramp-shaped laser pulses and simultaneously measuring nanosecond-duration time-resolved X-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability. The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to more-stable high-pressure allotropes1,2, just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the highest pressure at which X-ray diffraction has been recorded on any material.

7.
Phys Rev Lett ; 123(4): 045701, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31491279

RESUMEN

We combined laser shock compression with in situ x-ray diffraction to probe the crystallographic state of gold (Au) on its principal shock Hugoniot. Au has long been recognized as an important calibration standard in diamond anvil cell experiments due to the stability of its face-centered cubic (fcc) structure to extremely high pressures (P >600 GPa at 300 K). This is in contrast to density functional theory and first principles calculations of the high-pressure phases of Au that predict a variety of fcc-like structures with different stacking arrangements at intermediate pressures. In this Letter, we probe high-pressure and high-temperature conditions on the shock Hugoniot and observe fcc Au at 169 GPa and the first evidence of body-centered cubic (bcc) Au at 223 GPa. Upon further compression, the bcc phase is observed in coexistence with liquid scattering as the Hugoniot crosses the Au melt curve before 322 GPa. The results suggest a triple point on the Au phase diagram that lies very close to the principal shock Hugoniot near ∼220 GPa.

8.
Phys Rev Lett ; 122(25): 255704, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31347883

RESUMEN

Ultrafast x-ray diffraction at the LCLS x-ray free electron laser has been used to resolve the structural behavior of antimony under shock compression to 59 GPa. Antimony is seen to transform to the incommensurate, host-guest phase Sb-II at ∼11 GPa, which forms on nanosecond timescales with ordered guest-atom chains. The high-pressure bcc phase Sb-III is observed above ∼15 GPa, some 8 GPa lower than in static compression studies, and mixed Sb-III/liquid diffraction are obtained between 38 and 59 GPa. An additional phase which does not exist under static compression, Sb-I^{'}, is also observed between 8 and 12 GPa, beyond the normal stability field of Sb-I, and resembles Sb-I with a resolved Peierls distortion. The incommensurate Sb-II high-pressure phase can be recovered metastably on release to ambient pressure, where it is stable for more than 10 ns.

9.
Sci Rep ; 8(1): 16927, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446720

RESUMEN

Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets.

10.
Phys Rev Lett ; 118(2): 025501, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28128621

RESUMEN

Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

11.
Phys Rev Lett ; 115(9): 095701, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26371663

RESUMEN

The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading.

12.
J Virol ; 73(4): 3236-45, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10074177

RESUMEN

Cell cycle G2 arrest, nuclear localization, and cell death induced by human immunodeficiency virus type 1 Vpr were examined in fission yeast by using a panel of Vpr mutations that have been studied previously in human cells. The effects of the mutations on Vpr functions were highly similar between fission yeast and human cells. Consistent with mammalian cell studies, induction of cell cycle G2 arrest by Vpr was found to be independent of nuclear localization. In addition, G2 arrest was also shown to be independent of cell killing, which only occurred when the mutant Vpr localized to the nucleus. The C-terminal end of Vpr is crucial for G2 arrest, the N-terminal alpha-helix is important for nuclear localization, and a large part of the Vpr protein is responsible for cell killing. It is evident that the overall structure of Vpr is essential for these cellular effects, as N- and C-terminal deletions affected all three cellular functions. Furthermore, two single point mutations (H33R and H71R), both of which reside at the end of each alpha-helix, disrupted all three Vpr functions, indicating that these two mutations may have strong effects on the overall Vpr structure. The similarity of the mutant effects on Vpr function in fission yeast and human cells suggests that fission yeast can be used as a model system to evaluate these Vpr functions in naturally occurring viral isolates.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regulación Viral de la Expresión Génica , Productos del Gen vpr/genética , VIH-1/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , Muerte Celular/genética , Núcleo Celular/genética , Análisis Mutacional de ADN , Fase G2/genética , Genes prv , Humanos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...