Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 29(11): 1380-1385, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952592

RESUMEN

The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, synthesis and testing, a benzimidazole lead was rapidly and systematically advanced to a highly potent, selective and bioavailable DGAT1 inhibitor with the potential for further development.


Asunto(s)
Bencimidazoles/farmacología , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Química Farmacéutica , Diacilglicerol O-Acetiltransferasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 29(10): 1182-1186, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30926247

RESUMEN

Previously disclosed benzimidazole-based DGAT1 inhibitors containing a cyclohexane carboxylic acid moiety suffer from isomerization at the alpha position of the carboxylic acid group, generating active metabolites which exhibit DGAT1 inhibition comparable to the corresponding parent compounds. In this report, we describe the design, synthesis and profiling of benzimidazole-based DGAT1 inhibitors with a [3.1.0] bicyclohexane carboxylic acid moiety. Our results show that single isomer 3A maintains in vitro and in vivo inhibition against DGAT1. In contrast to previous lead compounds, 3A does not undergo isomerization during in vitro hepatocyte incubation study or in vivo mouse study.


Asunto(s)
Bencimidazoles/química , Ácidos Carboxílicos/química , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Animales , Bencimidazoles/metabolismo , Ácidos Carboxílicos/metabolismo , Cromatografía Líquida de Alta Presión , Ciclohexanonas/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/metabolismo , Hepatocitos/química , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Isomerismo , Espectrometría de Masas , Ratones , Ratas
3.
PLoS One ; 14(2): e0211568, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30811418

RESUMEN

Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Animales , Metabolismo Energético , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Homeostasis , Ratones Endogámicos C57BL , Oxidación-Reducción , Condicionamiento Físico Animal
4.
Cell Metab ; 27(6): 1236-1248.e6, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29706567

RESUMEN

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride (TG) synthesis and has been shown to play a role in regulating hepatic very-low-density lipoprotein (VLDL) production in rodents. To explore the potential of DGAT2 as a therapeutic target for the treatment of dyslipidemia, we tested the effects of small-molecule inhibitors and gene silencing both in vitro and in vivo. Consistent with prior reports, chronic inhibition of DGAT2 in a murine model of obesity led to correction of multiple lipid parameters. In contrast, experiments in primary human, rhesus, and cynomolgus hepatocytes demonstrated that selective inhibition of DGAT2 has only a modest effect. Acute and chronic inhibition of DGAT2 in rhesus primates recapitulated the in vitro data yielding no significant effects on production of plasma TG or VLDL apolipoprotein B. These results call into question whether selective inhibition of DGAT2 is sufficient for remediation of dyslipidemia.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Dislipidemias/metabolismo , Hepatocitos/metabolismo , Obesidad/metabolismo , Triglicéridos/metabolismo , Animales , Apolipoproteínas B/metabolismo , Células Cultivadas , Diacilglicerol O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Lipoproteínas VLDL/metabolismo , Macaca fascicularis , Macaca mulatta , Ratones , Ratones Endogámicos C57BL
5.
Am J Physiol Endocrinol Metab ; 313(1): E37-E47, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28292762

RESUMEN

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


Asunto(s)
Regulación del Apetito/genética , Peso Corporal/genética , Ingestión de Alimentos/genética , Péptido 1 Similar al Glucagón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Pérdida de Peso/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética
6.
ACS Med Chem Lett ; 5(10): 1082-7, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25349648

RESUMEN

We report the discovery of a novel series of DGAT1 inhibitors in the benzimidazole class with a piperdinyl-oxy-cyclohexanecarboxylic acid moiety. This novel series possesses significantly improved selectivity against the A2A receptor, no ACAT1 off-target activity at 10 µM, and higher aqueous solubility and free fraction in plasma as compared to the previously reported pyridyl-oxy-cyclohexanecarboxylic acid series. In particular, 5B was shown to possess an excellent selectivity profile by screening it against a panel of more than 100 biological targets. Compound 5B significantly reduces lipid excursion in LTT in mouse and rat, demonstrates DGAT1 mediated reduction of food intake and body weight in mice, is negative in a 3-strain Ames test, and appears to distribute preferentially in the liver and the intestine in mice. We believe this lead series possesses significant potential to identify optimized compounds for clinical development.

7.
Obesity (Silver Spring) ; 21(7): 1406-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23671037

RESUMEN

OBJECTIVE: Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. DESIGN AND METHODS: Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. RESULTS: Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). CONCLUSION: Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.


Asunto(s)
Peso Corporal/efectos de los fármacos , Diacilglicerol O-Acetiltransferasa/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Animales , Composición Corporal , Cromatografía Liquida , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Perros , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Heces/química , Tracto Gastrointestinal/metabolismo , Ginsenósidos/farmacología , Células HT29 , Hormonas/metabolismo , Humanos , Inmunohistoquímica , Lactonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Orlistat , Periodo Posprandial/efectos de los fármacos , Espectrometría de Masas en Tándem , Triglicéridos/sangre
8.
ACS Med Chem Lett ; 4(8): 773-8, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900745

RESUMEN

We report the design and synthesis of a series of novel DGAT1 inhibitors in the benzimidazole class with a pyridyl-oxy-cyclohexanecarboxylic acid moiety. In particular, compound 11A is a potent DGAT1 inhibitor with excellent selectivity against ACAT1. Compound 11A significantly reduces triglyceride excursion in lipid tolerance tests (LTT) in both mice and dogs at low plasma exposure. An in vivo study in mice with des-fluoro analogue 10A indicates that this series of compounds appears to distribute in intestine preferentially over plasma. The propensity to target intestine over plasma could be advantageous in reducing potential side effects since lower circulating levels of drug are required for efficacy. However, in the preclinical species, compound 11A undergoes cis/trans epimerization in vivo, which could complicate further development due to the presence of an active metabolite.

9.
Bioorg Med Chem ; 20(9): 2845-9, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22494842

RESUMEN

Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.


Asunto(s)
Benzodiazepinas/química , Diseño de Fármacos , Receptores de Bombesina/agonistas , Sulfonamidas/química , Sulfonamidas/síntesis química , Animales , Humanos , Ratones , Unión Proteica , Ratas , Receptores de Bombesina/metabolismo , Estereoisomerismo , Sulfonamidas/farmacocinética , Temperatura
10.
Bioorg Med Chem Lett ; 22(8): 2811-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22444683

RESUMEN

A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.


Asunto(s)
Carboxipeptidasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos , Animales , Butanoles/síntesis química , Butanoles/química , Butanoles/farmacología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Obesidad/tratamiento farmacológico , Pirrolidinas/síntesis química , Pirrolidinas/química , Pirrolidinas/farmacología
11.
Bioorg Med Chem Lett ; 22(8): 2818-22, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22444685

RESUMEN

A series of potent inhibitors of prolylcarboxypeptidase (PrCP) was developed by modifying a lead structure that was discovered by high-throughput screening. The tert-butyl pyrrolidine was replaced by an aminocyclopentane to reduce the metabolic liabilities of the original lead. The compounds demonstrated sub-nanomolar in vitro IC(50) values, minimal activity shifts in pure plasma and improved pharmacokinetics. Complete ex vivo plasma target engagement was achieved with low brain exposure at the 20 h time point following p.o. dosing in a mouse. The results indicate that the aminocyclopentanes are useful tools for studying the therapeutic potential of peripheral (non-CNS) PrCP inhibition.


Asunto(s)
Aminas/farmacología , Carboxipeptidasas/antagonistas & inhibidores , Ciclopentanos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos , Aminas/síntesis química , Aminas/química , Animales , Ciclización , Ciclopentanos/síntesis química , Ciclopentanos/química , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Obesidad/tratamiento farmacológico
12.
Bioorg Med Chem Lett ; 22(4): 1550-6, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22264488

RESUMEN

A series of benzodihydroisofurans were discovered as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase (PrCP) inhibitors. The structure-activity relationship (SAR) is focused on improving PrCP activity and metabolic stability, and reducing plasma protein binding. In the established diet-induced obese (eDIO) mouse model, compound ent-3a displayed target engagement both in plasma and in brain. However, this compound failed to induce significant body weight loss in eDIO mice in a five-day study.


Asunto(s)
Carboxipeptidasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Furanos/química , Furanos/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Activación Enzimática/efectos de los fármacos , Furanos/síntesis química , Humanos , Ratones , Ratones Obesos , Estructura Molecular , Relación Estructura-Actividad
13.
J Lipid Res ; 53(1): 51-65, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22021650

RESUMEN

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.


Asunto(s)
Modelos Animales de Enfermedad , Dislipidemias/sangre , Lípidos/sangre , Animales , Cricetinae , Perros , Dislipidemias/tratamiento farmacológico , Ácidos Grasos/sangre , Humanos , Ratones , Primates , Simvastatina/uso terapéutico , Triglicéridos/sangre
14.
ACS Med Chem Lett ; 3(3): 252-6, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900461

RESUMEN

Extensive structure-activity relationship studies of a series derived from atropisomer 1, a previously described chiral benzodiazepine sulfonamide series, led to a potent, brain penetrant and selective compound with excellent preclinical pharmacokinetic across species. We also describe the utilization of a high throughput mouse pharmacodynamic assay which allowed for expedient assessment of pharmacokinetic and brain distribution.

15.
Cell Metab ; 7(2): 179-85, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18249177

RESUMEN

The arcuate nucleus of the hypothalamus (ARH) is a key component of hypothalamic pathways regulating energy balance, and leptin is required for normal development of ARH projections. Diet-induced obesity (DIO) has a polygenic mode of inheritance, and DIO individuals develop the metabolic syndrome when a moderate amount of fat is added to the diet. Here we demonstrate that rats selectively bred to develop DIO, which are known to be leptin resistant before they become obese, have defective ARH projections that persist into adulthood. Furthermore, the ability of leptin to activate intracellular signaling in ARH neurons in vivo and to promote ARH neurite outgrowth in vitro is significantly reduced in DIO neonates. Thus, animals that are genetically predisposed toward obesity display an abnormal organization of hypothalamic pathways involved in energy homeostasis that may be the result of diminished responsiveness of ARH neurons to the trophic actions of leptin during postnatal development.


Asunto(s)
Hipotálamo/patología , Neuritas , Neuronas/ultraestructura , Obesidad/etiología , Animales , Regulación del Apetito , Núcleo Arqueado del Hipotálamo/patología , Dieta , Metabolismo Energético , Predisposición Genética a la Enfermedad , Leptina/fisiología , Ratas , Ratas Endogámicas , Transducción de Señal
16.
Am J Physiol Regul Integr Comp Physiol ; 292(5): R1782-91, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17218441

RESUMEN

In rats selectively bred to develop diet-induced obesity (DIO) or to be diet-resistant (DR), DIO maternal obesity selectively enhances the development of obesity and insulin resistance in their adult offspring. We postulated that the interaction between genetic predisposition and factors in the maternal environment alter the development of hypothalamic peptide systems involved in energy homeostasis regulation. Maternal obesity in the current studies led to increased body and fat pad weights and higher leptin and insulin levels in postnatal day 16 offspring of both DIO and DR dams. However, by 6 wk of age, most of these intergroup differences disappeared and offspring of obese DIO dams had unexpected increases in arcuate nucleus leptin receptor mRNA, peripheral insulin sensitivity, diet- and leptin-induced brown adipose temperature increase and 24-h anorectic response compared with offspring of lean DIO, but not lean DR dams. On the other hand, while offspring of obese DIO dams did have the highest ventromedial nucleus melanocortin-4 receptor expression, their anorectic and brown adipose thermogenic responses to the melanocortin agonist, Melanotan II (MTII), did not differ from those of offspring of lean DR or DIO dams. Thus, during their rapid growth phase, juvenile offspring of obese DIO dams have alterations in their hypothalamic systems regulating energy homeostasis, which ameliorates their genetic and perinatally determined predisposition toward leptin resistance. Because they later go onto become more obese, it is possible that interventions during this time period might prevent the subsequent development of obesity.


Asunto(s)
Hipotálamo/metabolismo , Obesidad/fisiopatología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Regulación hacia Arriba , Tejido Adiposo , Tejido Adiposo Pardo/metabolismo , Animales , Dieta , Leptina/metabolismo , Leptina/farmacología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/genética , Ratas , Receptores de Leptina , Factores de Tiempo , Aumento de Peso
17.
Am J Physiol Regul Integr Comp Physiol ; 291(3): R768-78, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16614055

RESUMEN

There is growing evidence that the postnatal environment can have a major impact on the development of obesity and insulin resistance in offspring. We postulated that cross-fostering obesity-prone offspring to lean, obesity-resistant dams would ameliorate their development of obesity and insulin resistance, while fostering lean offspring to genetically obese dams would lead them to develop obesity and insulin resistance as adults. We found that obesity-prone pups cross-fostered to obesity-resistant dams remained obese but did improve their insulin sensitivity as adults. In contrast, obesity-resistant pups cross-fostered to genetically obese dams showed a diet-induced increase in adiposity, reduced insulin sensitivity, and associated changes in hypothalamic neuropeptide, insulin, and leptin receptors, which might have contributed to their metabolic defects. There was a selective increase in insulin levels and differences in fatty acid composition of obese dam milk which might have contributed to the increased adiposity, insulin resistance, and hypothalamic changes in obesity-resistant cross-fostered offspring. These results demonstrate that postnatal factors can overcome both genetic predisposition and prenatal factors in determining the development of adiposity, insulin sensitivity, and the brain pathways that mediate these functions.


Asunto(s)
Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Obesidad/genética , Obesidad/metabolismo , Envejecimiento , Alimentación Animal , Animales , Metabolismo Energético , Ácidos Grasos/análisis , Femenino , Regulación de la Expresión Génica , Hormonas/sangre , Hipotálamo/metabolismo , Masculino , Leche/química , Neuropéptidos/metabolismo , ARN Mensajero/metabolismo , Ratas , Receptores de Neuropéptido/metabolismo , Aumento de Peso
18.
Obes Res ; 10(3): 173-81, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11886940

RESUMEN

OBJECTIVE: We examined the effectiveness of sibutramine to modulate food intake and body composition in rats with two levels of adiposity imposed by the duration of their maintenance on a moderate-fat diet. RESEARCH METHODS AND PROCEDURES: Male Sprague--Dawley rats were fed a 32% fat diet from weaning until 2 or 4 months of age, at which point, body fat was either 15% or 25%, respectively, as measured by DXA. Sibutramine (0.6 or 2 mg/kg, orally) was then given daily for 2 weeks. RESULTS: Food intake and body weight decreased acutely in a dose-related manner in both groups with sibutramine treatment. In all rats, food intake suppression was attenuated after multiple days of sibutramine. Both 15%- and 25%-fat rats had a persistent decrease in weight gain over the 2-week period in response to sibutramine. The older, 25%-fat rats were more sensitive to sibutramine than the younger, 15%-fat rats with regard to the magnitude of overall food intake inhibition, decrease in body weight gain, and caloric efficiency. Despite these differences, sibutramine produced the same relative reductions in fat mass and had no effect on lean mass in the two groups. DISCUSSION: Thus, sibutramine produced equivalent efficacy on carcass fat loss in both groups, despite less inhibition of feeding and body weight gain in leaner rats. Whether these changes are a result of the leaner rats being younger and on a steeper growth curve compared with older, fatter rats or whether this is a direct function of their level of adiposity remains to be determined.


Asunto(s)
Depresores del Apetito/farmacología , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ciclobutanos/farmacología , Ingestión de Alimentos/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...