Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34665129

RESUMEN

Multiple mitogenic pathways capable of promoting mammalian cardiomyocyte (CM) proliferation have been identified as potential candidates for functional heart repair following myocardial infarction. However, it is unclear whether the effects of these mitogens are species-specific and how they directly compare in the same cardiac setting. Here, we examined how CM-specific lentiviral expression of various candidate mitogens affects human induced pluripotent stem cell-derived CMs (hiPSC-CMs) and neonatal rat ventricular myocytes (NRVMs) in vitro. In 2D-cultured CMs from both species, and in highly mature 3D-engineered cardiac tissues generated from NRVMs, a constitutively active mutant form of the human gene Erbb2 (cahErbb2) was the most potent tested mitogen. Persistent expression of cahErbb2 induced CM proliferation, sarcomere loss, and remodeling of tissue structure and function, which were attenuated by small molecule inhibitors of Erk signaling. These results suggest transient activation of Erbb2/Erk axis in CMs as a potential strategy for regenerative heart repair.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Receptor ErbB-2/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos/fisiología , Ratas , Receptor ErbB-2/genética , Regeneración
2.
Exp Eye Res ; 161: 174-192, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28577895

RESUMEN

Sox2 is a well-established neuronal stem cell-associated transcription factor that regulates neural development and adult neurogenesis in vertebrates, and is one of the critical genes used to reprogram differentiated cells into induced pluripotent stem cells. We examined if Sox2 was involved in the early reprogramming-like events that Müller glia undergo as they upregulate many pluripotency- and neural stem cell-associated genes required for proliferation in light-damaged adult zebrafish retinas. In the undamaged adult zebrafish retina, Sox2 is expressed in Müller glia and a subset of amacrine cells, similar to other vertebrates. Following 31 h of light damage, Sox2 expression significantly increased in proliferating Müller glia. Morpholino-mediated knockdown of Sox2 expression resulted in decreased numbers of proliferating Müller glia, while induced overexpression of Sox2 stimulated Müller glia proliferation in the absence of retinal damage. Thus, Sox2 is necessary and sufficient for Müller glia proliferation. We investigated the role of Wnt/ß-catenin signaling, which is a known regulator of sox2 expression during vertebrate retinal development. While ß-catenin 2, but not ß-catenin 1, was necessary for Müller glia proliferation, neither ß-catenin paralog was required for sox2 expression following retinal damage. Sox2 expression was also necessary for ascl1a (neurogenic) and lin28a (reprogramming) expression, but not stat3 expression following retinal damage. Furthermore, Sox2 was required for Müller glial-derived neuronal progenitor cell amplification and expression of the pro-neural marker Tg(atoh7:EGFP). Finally, loss of Sox2 expression prevented complete regeneration of cone photoreceptors. This study is the first to identify a functional role for Sox2 during Müller glial-based regeneration of the vertebrate retina.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/fisiología , Células Ependimogliales/metabolismo , Regeneración Nerviosa/fisiología , Proteínas de Unión al ARN/metabolismo , Retina/fisiología , Factores de Transcripción SOX/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Técnica del Anticuerpo Fluorescente Indirecta , Técnicas de Silenciamiento del Gen , Immunoblotting , Etiquetado Corte-Fin in Situ , Luz , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Traumatismos Experimentales por Radiación/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/efectos de la radiación , Factores de Transcripción , Pez Cebra
3.
J Vis Exp ; (120)2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28287581

RESUMEN

An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP]mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Retina/citología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Microscopía , Modelos Animales
4.
J Biol Chem ; 289(10): 6934-6940, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24469449

RESUMEN

The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Previously, we identified a homolog of the Stil gene in zebrafish mutant (night blindness b, nbb), which showed neural defects in the retina (e.g. dopaminergic cell degeneration and/or lack of regeneration). In this research, we examined the roles of Stil in cell proliferation after degeneration in adult zebrafish retinas. We demonstrated that knockdown of Stil gene expression or inhibition of Sonic hedgehog (Shh) signaling transduction decreases the rate of cell proliferation. In contrast, activation of Shh signal transduction promotes cell proliferation. In nbb(+/-) retinas, inhibition of SUFU (a repressor in the Shh pathway) rescues the defects in cell proliferation due to down-regulation of Stil gene expression. The latter data suggest that Stil play a role in cell proliferation through the Shh signal transduction pathway.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proliferación Celular , Proteínas Hedgehog/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Retina/patología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/genética , Oxidopamina/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Retina/efectos de los fármacos , Retina/metabolismo , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Transducción de Señal , Proteína 1 de la Leucemia Linfocítica T Aguda , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Exp Eye Res ; 123: 131-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23880528

RESUMEN

This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration.


Asunto(s)
Células Ependimogliales/metabolismo , Regeneración/fisiología , Enfermedades de la Retina/fisiopatología , Neuronas Retinianas/fisiología , Pez Cebra/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales/citología
6.
J Neurosci ; 33(15): 6524-39, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575850

RESUMEN

Intense light exposure causes photoreceptor apoptosis in dark-adapted adult albino zebrafish (Danio rerio). Subsequently, Müller glia increase expression of the Achaete-scute complex-like 1a (Ascl1a) and Signal transducer and activator of transcription 3 (Stat3) transcription factors and re-enter the cell cycle to yield undifferentiated neuronal progenitors that continue to proliferate, migrate to the outer nuclear layer, and differentiate into photoreceptors. A proteomic analysis of light-damaged retinal homogenates, which induced Müller glia proliferation when injected into an undamaged eye, revealed increased expression of tumor necrosis factor α (TNFα) signaling proteins relative to undamaged retinal homogenates. TNFα expression initially increased in apoptotic photoreceptors and later in Müller glia. Morpholino-mediated knockdown of TNFα expression before light damage diminished the expression of both Ascl1a and Stat3 in Müller glia and significantly reduced the number of proliferating Müller glia without affecting photoreceptor cell death. Knockdown of TNFα expression in the Müller glia resulted in fewer proliferating Müller glia, suggesting that Müller glial-derived TNFα recruited additional Müller glia to re-enter the cell cycle. While TNFα is required for increased Ascl1a and Stat3 expression, Ascl1a and Stat3 are both necessary for TNFα expression in Müller glia. Apoptotic inner retinal neurons, resulting from intravitreal injection of ouabain, also exhibited increased TNFα expression that was required for Müller glia proliferation. Thus, TNFα is the first molecule identified that is produced by dying retinal neurons and is necessary to induce Müller glia to proliferate in the zebrafish retinal regeneration response.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular/efectos de los fármacos , Regeneración Nerviosa/fisiología , Neuroglía/fisiología , Neuronas Retinianas/metabolismo , Neuronas Retinianas/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/fisiología , Animales , Apoptosis/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen/métodos , Factor de Crecimiento Similar a EGF de Unión a Heparina , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/farmacología , Luz/efectos adversos , Regeneración Nerviosa/efectos de los fármacos , Ouabaína/farmacología , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Neuronas Retinianas/efectos de los fármacos , Factor de Transcripción STAT3/biosíntesis , Factores de Transcripción , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
7.
J Comp Neurol ; 520(18): 4294-311, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22886421

RESUMEN

We analyzed the role of Stat3, Ascl1a, and Lin28a in Müller glia reentry into the cell cycle following damage to the zebrafish retina. Immunohistochemical analysis was employed to determine the temporal and spatial expression of Stat3 and Ascl1a proteins following rod and cone photoreceptor cell apoptosis. Stat3 expression was observed in all Müller glia, whereas Ascl1a expression was restricted to only the mitotic Müller glia. Knockdown of Stat3 protein expression did not affect photoreceptor apoptosis, but significantly reduced, without abolishing, the number of proliferating Ascl1a-positive Müller glia. Knockdown of Ascl1a protein also did not change the extent of photoreceptor apoptosis, but did yield significantly fewer Müller glia that reentered the cell cycle relative to the stat3 morphant and significantly decreased the number and intensity of Stat3-expressing Müller glia. Finally, introduction of lin28a morpholinos resulted in decreased Müller glia expression of Stat3 and Ascl1a, significantly reducing the number of proliferating Müller glia. Thus, there are three populations of Müller glia in the light-damaged zebrafish retina: 1) Stat3-expressing Ascl1a-nonexpressing nonproliferating (quiescent) Müller glia; 2) Stat3-dependent Ascl1a-dependent proliferating Müller glia; and 3) Stat3-independent Ascl1a-dependent proliferating Müller glia. Whereas Ascl1a and Lin28a are required for Müller glia proliferation, Stat3 is necessary for the maximal number of Müller glia to proliferate during regeneration of the damaged zebrafish retina.


Asunto(s)
Proliferación Celular , Neurogénesis/fisiología , Neuroglía/metabolismo , Retina/patología , Enfermedades de la Retina/patología , Factor de Transcripción STAT3/metabolismo , Actinas/genética , Actinas/metabolismo , Adaptación Ocular , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Recuento de Células , Regulación de la Expresión Génica/efectos de la radiación , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Luz/efectos adversos , Neuroglía/clasificación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/metabolismo , Enfermedades de la Retina/etiología , Factor de Transcripción STAT3/genética , Factores de Transcripción , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...