Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553618

RESUMEN

We are at an inflection point in computing where traditional technologies are incapable of keeping up with the demands of exploding data collection and artificial intelligence. This challenge demands a leap to a new platform as transformative as the digital silicon revolution. Over the past 30 years molecular materials for computing have generated great excitement but continually fallen short of performance and reliability requirements. However, recent reports indicate that those historical limitations may have been resolved. Here we assess the current state of computing with molecular-based materials, especially using transition metal complexes of redox active ligands, in the context of neuromorphic computing. We describe two complementary research paths necessary to determine whether molecular materials can be the basis of a new computing technology: continued exploration of the molecular electronic properties that enable computation and, equally important, the process development for on-chip integration of molecular materials.

3.
Adv Mater ; 35(37): e2204551, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36043246

RESUMEN

Electronic transitions in molecular-circuit elements hinge on complex interactions between molecules and ions, offering a multidimensional parameter space to embed, access, and optimize material functionalities for target-specific applications. This opportunity is not cultivated in molecular memristors because their low-temperature charge transport, which is a route to decipher molecular many-body interactions, is unexplored. To address this, robust, temperature-resilient molecular memristors based on a Ru complex of an azo aromatic ligand are designed, and current-voltage sweep measurements from room temperature down to 2 K with different cooling protocols are performed. By freezing out or activating different components of supramolecular dynamics, the local Coulombic interactions between the molecules and counterions that affect the electronic transport can be controlled. Operating conditions are designed where functionalities spanning bipolar, unipolar, nonvolatile, and volatile memristors with sharp as well as gradual analog transitions are captured within a single device. A mathematical design space evolves, thereof comprising 36 tuneable parameters in which all possible steady-state functional variations in a memristor characteristic can be attainable. This enables a deterministic design route to engineer neuromorphic devices with unprecedented control over the transformation characteristics governing their functional flexibility and tunability.

4.
Adv Mater ; 35(37): e2206128, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36314389

RESUMEN

A breakthrough in in-memory computing technologies hinges on the development of appropriate material platforms that can overcome their existing limitations, such as larger than optimal footprint and multiple serial computational steps, with potential accumulation of errors. Using a molecular switching element with multiple non-monotonic and deterministic transitions, the device count and the number of computational steps can be substantially reduced. With molecular materials, however, the realization of a reliable and robust platform is an unattained goal for decades. Here, crossbar arrays with up to 64 molecular memristors are fabricated to experimentally demonstrate 8-bit serial and 4-bit parallel adders that operate for thousands of measurement cycles with an estimated error probability of 10-16 . For performance benchmarking, a 32-bit parallel adder is designed and simulated with 268 million inputs including contributions from the peripheral circuitry showing a 47× higher energy efficiency, 93× faster operation, and 9% of the footprint, leading to 4390 times improved energy-delay product compared to a special purpose complementary metal-oxide-semiconductor (CMOS)-based multicore adder.

5.
Nature ; 597(7874): 51-56, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471273

RESUMEN

Profuse dendritic-synaptic interconnections among neurons in the neocortex embed intricate logic structures enabling sophisticated decision-making that vastly outperforms any artificial electronic analogues1-3. The physical complexity is far beyond existing circuit fabrication technologies: moreover, the network in a brain is dynamically reconfigurable, which provides flexibility and adaptability to changing environments4-6. In contrast, state-of-the-art semiconductor logic circuits are based on threshold switches that are hard-wired to perform predefined logic functions. To advance the performance of logic circuits, we are re-imagining fundamental electronic circuit elements by expressing complex logic in nanometre-scale material properties. Here we use voltage-driven conditional logic interconnectivity among five distinct molecular redox states of a metal-organic complex to embed a 'thicket' of decision trees (composed of multiple if-then-else conditional statements) having 71 nodes within a single memristor. The resultant current-voltage characteristic of this molecular memristor (a 'memory resistor', a globally passive resistive-switch circuit element that axiomatically complements the set of capacitor, inductor and resistor) exhibits eight recurrent and history-dependent non-volatile switching transitions between two conductance levels in a single sweep cycle. The identity of each molecular redox state was determined with in situ Raman spectroscopy and confirmed by quantum chemical calculations, revealing the electron transport mechanism. Using simple circuits of only these elements, we experimentally demonstrate dynamically reconfigurable, commutative and non-commutative stateful logic in multivariable decision trees that execute in a single time step and can, for example, be applied as local intelligence in edge computing7-9.

6.
Adv Mater ; 32(42): e2004370, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32893411

RESUMEN

One common challenge highlighted in almost every review article on organic resistive memory is the lack of areal switching uniformity. This, in fact, is a puzzle because a molecular switching mechanism should ideally be isotropic and produce homogeneous current switching free from electroforming. Such a demonstration, however, remains elusive to date. The reports attempting to characterize a nanoscopic picture of switching in molecular films show random current spikes, just opposite to the expectation. Here, this longstanding conundrum is resolved by demonstrating 100% spatially homogeneous current switching (driven by molecular redox) in memristors based on Ru-complexes of azo-aromatic ligands. Through a concurrent nanoscopic spatial mapping using conductive atomic force microscopy and in operando tip-enhanced Raman spectroscopy (both with resolution <7 nm), it is shown that molecular switching in the films is uniform from hundreds of micrometers down to the nanoscale and that conductance value exactly correlates with spectroscopically determined molecular redox states. This provides a deterministic molecular route to obtain spatially homogeneous, forming-free switching that can conceivably overcome the chronic problems of robustness, consistency, reproducibility, and scalability in organic memristors.

7.
Nat Nanotechnol ; 15(5): 380-389, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203436

RESUMEN

Electronic symmetry breaking by charge disproportionation results in multifaceted changes in the electronic, magnetic and optical properties of a material, triggering ferroelectricity, metal/insulator transition and colossal magnetoresistance. Yet, charge disproportionation lacks technological relevance because it occurs only under specific physical conditions of high or low temperature or high pressure. Here we demonstrate a voltage-triggered charge disproportionation in thin molecular films of a metal-organic complex occurring in ambient conditions. This provides a technologically relevant molecular route for simultaneous realization of a ternary memristor and a binary memcapacitor, scalable down to a device area of 60 nm2. Supported by mathematical modelling, our results establish that multiple memristive states can be functionally non-volatile, yet discrete-a combination perceived as theoretically prohibited. Our device could be used as a binary or ternary memristor, a binary memcapacitor or both concomitantly, and unlike the existing 'continuous state' memristors, its discrete states are optimal for high-density, ultra-low-energy digital computing.

8.
Chem Sci ; 11(34): 9226-9236, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34123171

RESUMEN

We demonstrate a strategy inspired by natural siderophores for the dissolution of platinum nanoparticles that could enable their size-selective synthesis, toxicological assessment, and the recycling of this precious metal. From the fabrication of electronics to biomedical diagnosis and therapy, PtNPs find increasing use. Mitigating concerns over potential human toxicity and the need to recover precious metal from industrial debris motivates the study of bio-friendly reagents to replace traditional harsh etchants. Herein, we report a family of redox-active siderophore-viz. π-acceptor azo aromatic ligands (L) that spontaneously ionize and chelate Pt atoms selectively from nanoparticles of size ≤6 nm. The reaction produces a monometallic diradical complex, PtII(L˙-)2, isolated as a pure crystalline compound. Density functional theory provides fundamental insights on the size dependent PtNP chemical reactivity. The reported findings reveal a generalized platform for designing π-acceptor ligands to adjust the size threshold for dissolution of Pt or other noble metals NPs. Our approach may, for example, be used for the generation of Pt-based therapeutics or for reclamation of Pt nano debris formed in catalytic converters or electronic fabrication industries.

9.
Inorg Chem ; 57(19): 11995-12009, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30207466

RESUMEN

In this work, the effect of the electronically different ancillary ligands on the overall properties of the RuIIL moiety (L = 2,6-bis(phenylazo)pyridine) in heteroleptic complexes of general formula [RuLQCl]0/+ was investigated. Four different ancillary ligands (Q) with different electronic effects were used to prepare the heteroleptic compounds from the precursor complex, [RuL(CH3CN)Cl2] (1); Q = pcp: 2-(4-chloro-phenylazo)pyridine (strong π-acceptor), [2]+; bpy: 2,2'-bipyridyl (moderate π-acceptor), [3]+; acac-: acetylacetonate (strong σ-donor), 4; and DTBCat2-: 3,5-di- tert-butyl catecholate (strong π-donor), 5. The complexes [2]+, [3]+, 4, and 5 were fully characterized and structurally identified. The electronic structures of these complexes along with their redox partners were elucidated by using a host of physical measurements: nuclear magnetic resonance, cyclic voltammetry, electronic paramagnetic resonance, UV-vis-NIR spectroscopy, and density functional theory. The studies revealed significant effects of the coligands on azo bond lengths of the RuL moiety and their redox behavior. Aerobic alcohol oxidation reactions using these Ru complexes as catalysts were scrutinized. It was found that the catalytic efficiency is primarily controlled by the electronic effect of the coligand. Accordingly, the complex [2]+ (containing a strong π-acceptor coligand, pcp) brings about oxidation efficiently, producing 86% of benzaldehyde. In comparison, however, the complexes 4 and 5 (containing electron donating coligand) furnished only 15-20% of benzaldehyde under identical reaction conditions. Investigations of the reaction mechanism suggest that an unstable Ru-H species is formed, which is transformed to a Ru-hydrazo intermediate by H-walking as reported by Hall et al. ( J. Am. Chem. Soc., 2015, 137, 12330). Aerial O2 regenerates the catalyst via oxidation of the hydrazo intermediate.

10.
J Org Chem ; 83(15): 7771-7778, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-29869492

RESUMEN

A controlled tandem synthetic route to azines from various alcohols and hydrazine hydrate by the use of a Ni(II) complex of 2,6-bis(phenylazo)pyridine as a catalyst is reported. In marked contrast to the previous report, the reaction is operative using an earth-abundant metal catalyst, milder reaction conditions, and aerobic conditions, which though are desirable but unprecedented in the literature. The catalytic reaction has a vast substrate scope including a single-step synthesis of phthalazine from 1,2-benzenedimethanol and hydrazine hydrate via intramolecular coupling. Mechanistic investigation suggests that the coordinated ligand redox controls the reaction by the use of a reversible azo (N═N)/ hydrazo (NH-NH) redox couple where the metal center is used primarily as a template.

11.
Inorg Chem ; 57(12): 6816-6824, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29863859

RESUMEN

Electroprotic storage materials, though invaluable in energy-related research, are scanty among non-natural compounds. Herein, we report a zinc(II) complex of the ligand 2,6-bis(phenylazo)pyridine (L), which acts as a multiple electron and proton reservoir during catalytic dehydrogenation of alcohols to aldehydes/ketones. The redox-inactive metal ion Zn(II) serves as an oxophilic Lewis acid, while the ligand behaves as efficient storage of electron and proton. Synthesis, X-ray structure, and spectral characterizations of the catalyst, ZnLCl2 (1a) along with the two hydrogenated complexes of 1a, ZnH2LCl2 (1b), and ZnH4LCl2 (1c) are reported. It has been argued that the reversible azo-hydrazo redox couple of 1a controls aerobic dehydrogenation of alcohols. Hydrogenated complexes are hyper-reactive and quantitatively reduce O2 and para-benzoquinone to H2O2 and para-hydroquinone, respectively. Plausible mechanistic pathways for alcohol oxidation are discussed based on controlled experiments, isotope labeling, and spectral analysis of intermediates.

13.
Nat Mater ; 16(12): 1216-1224, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29058729

RESUMEN

Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (∼350 devices), fast switching (≤30 ns), excellent endurance (∼1012 cycles), stability (>106 s) and scalability (down to ∼60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

14.
Inorg Chem ; 56(9): 4966-4977, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28426213

RESUMEN

In this work, ortho-C-N bond fusion reactions of aniline are followed by the use of two different ruthenium mediators. Reaction of aniline with [RuIII(terpy)Cl3] (terpy = 2,2':6',2″-terpyridine) resulted in a trans bis-aniline ruthenium(II) complex [1]+ which upon oxidation with H2O2 produced compound [2]+ of a bidentate ligand, N-phenyl-1,2-benzoquinonediimine, due to an oxidative ortho-C-N bond fusion reaction. Complex [1]+ and aniline (neat) at 185 °C produced a bis-chelated ruthenium complex (3). A previously reported complex [RuII(N-phenyl-1,2-benzoquinonediimine)(aniline)2(Cl)2] (5) undergoes similar oxidation by air at 185 °C to produce complex [3]. A separate chemical reaction between aniline and strongly oxidizing tetra-n-propylammonium perruthenate [(n-pr)4N]+[RuO4]- in air produced a ruthenium complex [4] of a N4-tetraamidophenylmacrocycle ligand via multiple ortho-C-N bond fusion reaction. Notably, the yield of this product is low (5%) at 100 °C but increases to 25% in refluxing aniline. All these complexes are characterized fully by their physicochemical characterizations and X-ray structure determination. From their structural parameters and other spectroscopic studies, complex [2]+ is assigned as [RuII(terpy)(N-phenyl-1,2-benzoquinonediimine)(Cl)]+ whereas complex [4] is described as a ruthenium(VI) complex comprised of a reduced deprotonated N-phenyl-1,2-diamidobenzene and N4-tetraamidophenylmacrocyclic ligand. Complex [2]+ exhibits one reversible oxidation at 1.32 V and one reversible reduction at -0.75 V vs Ag/AgCl reference electrode. EPR of the electrogenerated complexes has revealed that the oxidized complex is a ruthenium(III) complex with an axial EPR spectrum at gav= 2.06. The reduced complex [2], on the other hand, shows a single-line EPR signal at gav= 1.998. In contrast, complex [4] shows two successive one-electron oxidation waves at 0.5 and 0.8 V and an irreversible reduction wave at -0.9 V. EPR studies of the oxidized complexes [4]+ and [4]2+ reveal that oxidations are ligand centered. DFT calculations were employed to elucidate the electronic structures as well as the redox processes associated with the above complexes. Aerial ortho-C-N bond fusion reactions of aniline using two different mediators, viz. [RuIII(terpy)Cl3] and [(n-pr)4N]+[RuO4]-, have been followed. It is found that in the case of oxidizable Ru(III) mediator complex, C-N bond fusion is limited only to dimerization reaction whereas the high-valent Ru(VII) salt mediates multiple C-N bond fusion reactions leading to the formation of a novel tetradentate N4-tetraamidophenylmacrocyclic ligand. Valence ambiguity in the complexes of the resultant redox-active ligands is scrutinized.

15.
Inorg Chem ; 55(19): 9602-9610, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27646531

RESUMEN

Design of an efficient new catalyst that can mimic the enzymatic pathway for catalytic dehydrogenation of liquid fuels like alcohols is described in this report. The catalyst is a nickel(II) complex of 2,6-bis(phenylazo)pyridine ligand (L), which possesses the above requisite with excellent catalytic efficiencies for controlled dehydrogenation of alcohols using ligand-based redox couple. Mechanistic studies supported by density functional theory calculations revealed that the catalytic cycle involves hydrogen atom transfer via quantum mechanical tunneling with significant kH/kD isotope effect of 12.2 ± 0.1 at 300 K. A hydrogenated intermediate compound, [NiIICl2(H2L)], is isolated and characterized. The results are promising in the context of design of cheap and efficient earth-abundant metal catalyst for alcohol oxidation and hydrogen storage.


Asunto(s)
Alcoholes/química , Complejos de Coordinación/química , Aldehídos/síntesis química , Compuestos Azo/química , Catálisis , Hidrogenación , Cetonas/síntesis química , Ligandos , Modelos Químicos , Níquel/química , Oxidación-Reducción , Teoría Cuántica
16.
Inorg Chem ; 54(23): 11465-76, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26562467

RESUMEN

In an unusual reaction of [Pd(L(1))Cl2] (L(1) = 2-(arylazo)pyridine) with amines, a new series of palladium complexes [Pd(L(2•-))Cl] (L(2) = 2-((2-amino)arylazo)pyridine) (1a-1h) were isolated. The complexes were formed via N-H and N-C bond cleavage reactions of 1°/2° and 3° amines, respectively, followed by regioselective aromatic ortho-C-N bond formation reaction and are associated with ortho-C-H/ortho-C-Cl bond activation. A large variety of amines including both aromatic and aliphatic were found to be effective in producing air-stable complexes. Identity of the resultant complexes was confirmed by their X-ray structure determination. Efforts were also made to understand the mechanism of the reaction. A series of experiments were performed, which point toward initial ligand reduction followed by intraligand electron transfer. Examination of the structural parameters of these complexes (1) indicates that the in situ generated ligand coordinated to the Pd(II) center serves as the backbone of these air-stable monoradical complexes. Molecular and electronic structures of the isolated complexes were further scrutinized by various spectroscopic techniques including cyclic voltammetry, variable temperature magnetic susceptibility measurements, electron paramagnetic resonance, and UV-vis spectroscopy. Finally the electronic structure was confirmed by density functional theory calculations. The isolated monoradical complexes adopt an unusual π-stacked array, which leads to a relatively strong antiferromagnetic interaction (J = -40 cm(-1) for the representative complex 1c).

17.
Inorg Chem ; 54(13): 6235-44, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26107050

RESUMEN

Three chemical reactions of two 2-aminothioethers and 2-aminothiophenol with CpRu(II)Cl(PPh3)2 (Cp(-) = cyclopentadienyl anion), under identical reaction conditions, are reported. While 2-(methylthio)aniline, H2L(1) and an analogous substrate, 2-(phenylthio)aniline yielded dicationic dinuclear complexes [(PPh3)CpRu(II)(L(3/)L(4))Ru(II)Cp(PPh3)]Cl2 (where L(3) = (4E)-4-(4-imino-3-(methylthio)cyclohexa-2,5-dienylidene)-2-(methylthio)cyclohexa-2,5-dienimine ([1a]Cl2) and L(4) = (4E)-4-(4-imino-3-(phenylthio)cyclohexa-2,5-dienylidene)-2-(phenylthio)cyclohexa-2,5-dienimine ([1b]Cl2)), the reaction with 2-aminothiophenol (H2L(2)) produced a mononuclear complex [(PPh3)CpRu(II)(L(2))]Cl (where L(2) = 6-iminocyclohexa-2,4-dienethione) ([2]Cl). All these complexes are obtained in high yields (65%-75%). Formations of the products from the above reactions involve a similar level of oxidation of the respective substrate, although their courses are completely different. A comparison between the above two chemical transformations are scrutinized thoroughly. Characterizations of these complexes were made using a host of physical methods: X-ray crystallography, nuclear magnetic resonance (NMR), cyclic voltammetry, ultraviolet-visible (UV-vis), electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT). The complexes [1a]Cl2 and [1b]Cl2 showed intense metal-to-ligand charge transfer transition in the long wavelength region of the spectrum, at 860 and 895 nm, respectively, and displayed two reversible electron transfer (ET) processes at [1a](2+): -0.28 and -0.52 V; [1b](2+): -0.13 and -0.47 V, along with an irreversible ET process at 0.76 and 0.54 V, respectively. The ET processes at negative potentials are due to successive reductions of the bridging ligand, which are characterized by EPR and UV-vis spectroscopy. The one-electron reduced compound, [1a](+), showed a intraligand charge transfer transition (ILCT) at 1530 nm. The complex [2](+) showed a reversible ET process at -0.36 V and two irreversible ET processes at -1.04 and 1.18 V, respectively. DFT calculations were used to support the spectral and redox properties of the complexes and also to throw light on the difference of redox behavior between thioether and thiophenol substrates.

18.
Inorg Chem ; 54(11): 5257-65, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978689

RESUMEN

Reactions of M(CO)6 (M = Mo, Cr) and 2 mol of 2,4-di-tert-butyl-6-(pyridin-2-ylazo)-phenol ligand (HL) in air yielded [Mo(VI)O2(L(1)¯)2], 1, and [Cr(III)(L(1)¯)(L(•2)¯)], 2, respectively, in high yields. Formation of the Cr-complex is a substitution reaction, which is associated with electron transfer, while that of Mo is an example of molecular oxygen activation. Isolated monoradical chromium complex 2 is susceptible to oxidation. Accordingly the reaction of 2 with the oxidant, I2 produces a cationic nonradical complex of chemical composition [Cr(III)(L(1)¯)2]I3, [2]I3 in almost quantitative yield. All the isolated complexes are primarily characterized by various spectroscopic techniques and magnetic measurements. While the molybdenum complex is diamagnetic, the two chromium complexes behave as simple paramagnets: µeff (295 K), 2.81 µB and 3.79 µB for 2 and [2]I3, respectively. Single-crystal three-dimensional X-ray structures of 1, 2, [2]I3 are reported. The geometry of the Mo-complex is square antiprism (octacoordination), and that of the Cr-complexes is distorted octahedral. Redox properties of the complexes are studied by cyclic voltammetry and constant potential coulometry. The data are analyzed based on density functional theoretical calculations of molecular orbitals of redox isomers of the Cr complexes. The results indicated that the redox events in the complexes occur at the ligand center. The oxidation state of Cr in 2 is further assessed by XPS measurements and compared with the reported systems.

19.
Inorg Chem ; 53(22): 12002-13, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25372948

RESUMEN

A series of nickel complexes of 2-(arylazo)pyridine have been synthesized, and the precise structure and stoichiometry of the complexes are controlled by the use of different metal precursors. Molecular and electronic structures of the isolated complexes are scrutinized thoroughly by various spectroscopic techniques, single crystal X-ray crystallography, and density functional theory (DFT). Two different classes of Ni(II) complexes are identified where the ligands bind as neutral or anion radicals in the respective metal complexes. These are shown to be chemically interconvertible, and their characterization confirmed that the redox series is entirely ligand-centered without affecting the bivalent oxidation state of the metal ion. An efficient method of Ni(II) catalyzed N-arylation of 2-(arylazo)pyridine substrates has been elaborated. The chemical reactions have led to isolation of strongly fluorescent 2-pyridyl-substituted hydrazine derivatives, which have been characterized thoroughly. Three-dimensional X-ray structure of a hydrazine molecule, 2-(2-(naphthalen-1-yl)-2-phenylhydrazinyl)pyridine, is reported. Isolated hydrazines satisfy all the prerequisites of an ideal dye with moderate absorptive property, large Stokes shift, high quantum yields, and high photostability.

20.
Chemistry ; 20(20): 6103-11, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24682999

RESUMEN

Two examples of a rare class of di-radical azo-anion complexes of 2-(arylazo) pyridine with Ir(III) carrier are introduced. Their electronic structures have been elucidated using a host of physical methods that include X-ray crystallography, cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory. Room temperature magnetic moments of these are consistent with two nearly non-interacting azo-anion radicals. These displayed rich electrochemical properties consisting of six numbers of reversible and successive one electron CV-waves. Redox processes occur entirely at the coordinated ligands without affecting metal redox state. Apart from reporting their chemical characterization, I-V characteristics of these complexes in film state are investigated using sandwich-type devices comprising of a thin film of 100-125 nm thickness placed between two gold-plated ITO electrodes. These showed memory switching properties covering a useful voltage range with a reasonable ON/OFF ratio and also are suitable for RAM/ROM applications. I-V characteristics of two similar complexes of Rh and Cr with identical ligand environment and electronic structure are also referred for developing an insight into the memory switching ability of Ir- and Rh- complexes on the basis of comparative analysis of responses of the respective systems. In a nutshell, thorough analysis of voltage driven redox dynamics and corresponding solid and solution state current responses of all the systems are attempted and there from an unexplored class of switching devices are systematically introduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...