Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36649084

RESUMEN

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.


Asunto(s)
Dieta Alta en Grasa , Exocitosis , Lípidos , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Dieta Alta en Grasa/efectos adversos , Exocitosis/genética , Riñón/metabolismo , Riñón/patología , Lípidos/toxicidad , Lisosomas/metabolismo , Obesidad/metabolismo , Insuficiencia Renal Crónica/metabolismo
2.
J Biosci Bioeng ; 133(1): 46-55, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34620543

RESUMEN

The production of chemicals and fuels from renewable resources using engineered microbes is an attractive alternative for current fossil-dependent industries. Metabolic engineering has contributed to pathway engineering for the production of chemicals and fuels by various microorganisms. Recently, dynamic metabolic engineering harnessing synthetic biological tools has become a next-generation strategy in this field. The dynamic regulation of metabolic flux during fermentation optimizes metabolic states according to each fermentation stage such as cell growth phase and compound production phase. However, it is necessary to repeat the evaluation and redesign of the dynamic regulation system to achieve the practical use of engineered microbes. In this study, we performed quantitative metabolome analysis to investigate the effects of dynamic metabolic flux regulation on engineered Escherichia coli for γ-amino butyrate (GABA) fermentation. We prepared a stable isotope-labeled internal standard mixture (SILIS) for the stable isotope dilution method (SIDM), a mass spectrometry-based quantitative metabolome analysis method. We found multiple candidate bottlenecks for GABA production. Some metabolic reactions in the GABA production pathway should be engineered for further improvement in the direct GABA fermentation with dynamic metabolic engineering strategy.


Asunto(s)
Ingeniería Metabólica , Metabolómica , Escherichia coli/genética , Fermentación , Isótopos , Metaboloma
3.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726690

RESUMEN

Interferon (IFN)-γ is mainly secreted by CD4+ T helper 1 (Th1), natural killer (NK) and NKT cells after skin injury. Although IFN-γ is well known regarding its inhibitory effects on collagen synthesis by fibroblasts in vitro, information is limited regarding its role in wound healing in vivo. In the present study, we analyzed how the defect of IFN-γ affects wound healing. Full-thickness wounds were created on the backs of wild type (WT) C57BL/6 and IFN-γ-deficient (KO) mice. We analyzed the percent wound closure, wound breaking strength, accumulation of leukocytes, and expression levels of COL1A1, COL3A1, and matrix metalloproteinases (MMPs). IFN-γKO mice exhibited significant attenuation in wound closure on Day 10 and wound breaking strength on Day 14 after wound creation, characteristics that are associated with prolonged neutrophil accumulation. Expression levels of COL1A1 and COL3A1 mRNA were lower in IFN-γKO than in WT mice, whereas expression levels of MMP-2 (gelatinase) mRNA were significantly greater in IFN-γKO than in WT mice. Moreover, under neutropenic conditions created with anti-Gr-1 monoclonal antibodies, wound closure in IFN-γKO mice was recovered through low MMP-2 expression levels. These results suggest that IFN-γ may be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/inmunología , Interferón gamma/deficiencia , Metaloproteinasa 2 de la Matriz/inmunología , Neutrófilos/inmunología , Cicatrización de Heridas/inmunología , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/inmunología , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/inmunología , Activación Enzimática/genética , Activación Enzimática/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interferón gamma/inmunología , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Noqueados , Neutrófilos/patología , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...