Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mar Biotechnol (NY) ; 26(2): 223-229, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345665

RESUMEN

Reef-building corals are a fundamental pillar of coral reef ecosystems in tropical and subtropical shallow environments. Corals harbor symbiotic dinoflagellates belonging to the family Symbiodiniaceae, commonly known as zooxanthellae. Extensive research has been conducted on this symbiotic relationship, yet the fundamental information about the distribution and localization of Symbiodiniaceae cells in corals is still limited. This information is crucial to understanding the mechanism underlying the metabolite exchange between corals and their algal symbionts, as well as the metabolic flow within holobionts. To examine the distribution of Symbiodiniaceae cells within corals, in this study, we used fluorescence imaging and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MS-Imaging) on branches of the Acropora tenuis coral. We successfully prepared frozen sections of the coral for molecular imaging without fixing or decalcifying the coral branches. By combining the results of MS-Imaging with that of the fluorescence imaging, we determined that the algal Symbiodiniaceae symbionts were not only localized in the tentacle and surface region of the coral branches but also inhabited the in inner parts. Therefore, the molecular imaging technique used in this study could be valuable to further investigate the molecular dynamics between corals and their symbionts.


Asunto(s)
Antozoos , Dinoflagelados , Microalgas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Simbiosis , Antozoos/metabolismo , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Microalgas/metabolismo , Arrecifes de Coral , Imagen Molecular/métodos
2.
Lipids ; 59(2): 55-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299442

RESUMEN

Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder. Insulin resistance and oxidative stress are associated with T2DM development. The hypothesis that patients with T2DM show excess accumulation of lipids, such as ceramides (Cers) and diacylglycerols (DAGs), in their skeletal muscles has been widely supported; however, detailed lipidomic data at the molecular species level are limited. Therefore, in this study, we aimed to investigate the in vitro dynamics of total lipids, including phospholipids (PLs), sphingolipids, and neutral lipids, in palmitic acid-induced insulin-resistant C2C12 skeletal muscle cells. Our data demonstrated that the profiles of not only Cers and DAGs but also those of PLs showed considerably differences after palmitate treatment. We found that PL synthesis reduced and PL degradation increased after palmitate treatment. These findings may aid in the development of treatments to ameliorate muscle dysfunction caused by lipid accumulation in muscles.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Palmitatos/farmacología , Fosfolípidos/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Lipidómica , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Resistencia a la Insulina/fisiología , Ceramidas/metabolismo
3.
iScience ; 26(7): 107250, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485344

RESUMEN

The giant clam Tridacna crocea thrives in poorly nourished coral reef water by forming a holobiont with zooxanthellae and utilizing photosynthetic products of the symbiont. However, detailed metabolic crosstalk between clams and symbionts is elusive. Here, we discovered that the nonphosphorous microalgal betaine lipid DGCC (diacylglycerylcarboxy-hydroxymethylcholine) and its deacylated derivative GCC are present in all tissues and organs, including algae-free sperm and eggs, and are metabolized. Colocalization of DGCC and PC (phosphatidylcholine) evidenced by MS imaging suggested that DGCC functions as a PC substitute. The high content of GCC in digestive diverticula (DD) suggests that the algal DGCC was digested in DD for further utilization. Lipidomics analysis showing the organ-specific distribution pattern of DGCC species suggests active utilization of DGCC as membrane lipids in the clam. Thus, the utilization of zooxanthellal DGCC in animal cells is a unique evolutionary outcome in phosphorous-deficient coral reef waters.

4.
Front Physiol ; 14: 1178869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346489

RESUMEN

Organisms adapt to changes in their environment to survive. The emergence of predators is an example of environmental change, and organisms try to change their external phenotypic systems and physiological mechanisms to adapt to such changes. In general, prey exhibit different phenotypes to predators owing to historically long-term prey-predator interactions. However, when presented with a novel predator, the extent and rate of phenotypic plasticity in prey are largely unknown. Therefore, exploring the physiological adaptive response of organisms to novel predators is a crucial topic in physiology and evolutionary biology. Counterintuitively, Xenopus tropicalis tadpoles do not exhibit distinct external phenotypes when exposed to new predation threats. Accordingly, we examined the brains of X. tropicalis tadpoles to understand their response to novel predation pressure in the absence of apparent external morphological adaptations. Principal component analysis of fifteen external morphological parameters showed that each external morphological site varied nonlinearly with predator exposure time. However, the overall percentage change in principal components during the predation threat (24 h) was shown to significantly (p < 0.05) alter tadpole morphology compared with that during control or 5-day out treatment (5 days of exposure to predation followed by 5 days of no exposure). However, the adaptive strategy of the altered sites was unknown because the changes were not specific to a particular site but were rather nonlinear in various sites. Therefore, RNA-seq, metabolomic, Ingenuity Pathway Analysis, and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the entire brain to investigate physiological changes in the brain, finding that glycolysis-driven ATP production was enhanced and ß-oxidation and the tricarboxylic acid cycle were downregulated in response to predation stress. Superoxide dismutase was upregulated after 6 h of exposure to new predation pressure, and radical production was reduced. Hemoglobin was also increased in the brain, forming oxyhemoglobin, which is known to scavenge hydroxyl radicals in the midbrain and hindbrain. These suggest that X. tropicalis tadpoles do not develop external morphological adaptations that are positively correlated with predation pressure, such as tail elongation, in response to novel predators; however, they improve their brain functionality when exposed to a novel predator.

5.
J Biol Chem ; 299(7): 104848, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37217003

RESUMEN

Skeletal muscle consists of both fast- and slow-twitch fibers. Phospholipids are important structural components of cellular membranes, and the diversity of their fatty acid composition affects membrane characteristics. Although some studies have shown that acyl chain species in phospholipids differ among various muscle fiber types, the mechanisms underlying these differences are unclear. To investigate this, we analyzed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules in the murine extensor digitorum longus (EDL; fast-twitch) and soleus (slow-twitch) muscles. In the EDL muscle, the vast majority (93.6%) of PC molecules was palmitate-containing PC (16:0-PC), whereas in the soleus muscle, in addition to 16:0-PC, 27.9% of PC molecules was stearate-containing PC (18:0-PC). Most palmitate and stearate were bound at the sn-1 position of 16:0- and 18:0-PC, respectively, and 18:0-PC was found in type I and IIa fibers. The amount of 18:0-PE was higher in the soleus than in the EDL muscle. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) increased the amount of 18:0-PC in the EDL. Lysophosphatidylglycerol acyltransferase 1 (LPGAT1) was highly expressed in the soleus compared with that in the EDL muscle and was upregulated by PGC-1α. LPGAT1 knockout decreased the incorporation of stearate into PC and PE in vitro and ex vivo and the amount of 18:0-PC and 18:0-PE in murine skeletal muscle with an increase in the level of 16:0-PC and 16:0-PE. Moreover, knocking out LPGAT1 decreased the amount of stearate-containing phosphatidylserine (18:0-PS), suggesting that LPGAT1 regulated the acyl chain profiles of phospholipids, namely, PC, PE, and PS, in the skeletal muscle.


Asunto(s)
Fibras Musculares de Contracción Rápida , Músculo Esquelético , Fosfolípidos , Animales , Ratones , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolípidos/química , Fosfolípidos/genética , Fosfolípidos/metabolismo , Estearatos/metabolismo , Plasmalógenos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fibras Musculares Esqueléticas/metabolismo
6.
Heliyon ; 9(4): e15281, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37096007

RESUMEN

Carnitine plays multiple roles in skeletal muscle metabolism, including fatty acid transport and buffering of excess acetyl-CoA in the mitochondria. The skeletal muscle cannot synthesize carnitine; therefore, carnitine must be taken up from the blood into the cytoplasm. Carnitine metabolism, its uptake into cells, and the subsequent reactions of carnitine are accelerated by muscle contraction. Isotope tracing enables the marking of target molecules and monitoring of tissue distribution. In this study, stable isotope-labeled carnitine tracing was combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to determine carnitine distribution in mouse skeletal muscle tissues. Deuterium-labeled carnitine (d3-carnitine) was intravenously injected into the mice and diffused to the skeletal muscles for 30 and 60 min. To examine whether muscle contraction changes the distribution of carnitine and its derivatives, unilateral in situ muscle contraction was performed; 60 min muscle contraction showed increased d3-carnitine and its derivative d3-acetylcarnitine in the muscle, indicating that carnitine uptake in cells is promptly converted to acetylcarnitine, consequently, buffering accumulated acetyl-CoA. While the endogenous carnitine was localized in the slow type fibers rather than fast type, the contraction-induced distributions of d3-carnitine and acetylcarnitine were not necessarily associated with muscle fiber type. In conclusion, the combination of isotope tracing and MALDI-MS imaging can reveal carnitine flux during muscle contraction and show the significance of carnitine in skeletal muscles.

7.
Mar Biotechnol (NY) ; 24(6): 1158-1167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36322281

RESUMEN

The toxic flatworm, Planocera multitentaculata, possesses highly concentrated tetrodotoxin (TTX), also known as pufferfish toxin, throughout its life cycle, including the egg and larval stages. Additionally, TTX analogues, 5,6,11-trideoxyTTX and 11-norTTX-6(S)-ol, have also been detected in the flatworm. The high concentration of TTX in the eggs and larvae appears to be for protection against predation, and 11-norTTX-6(S)-ol in the pharyngeal tissue in the adults is likely used to sedate or kill prey during predation. However, information on the role of 5,6,11-trideoxyTTX, a potential important biosynthetic intermediate of TTX, in the toxic flatworm is lacking. Here, we aimed to determine the region of localization of TTX and its analogues in the flatworm body, understand their pharmacokinetics during maturation, and speculate on their function. Flatworm specimens in four stages of maturity, namely juvenile, mating, spawning, and late spawning, were subjected to LC-MS/MS analysis, using the pharyngeal tissue, oocytes in seminal receptacle, sperm, and tissue from 12 other sites. Although TTX was consistently high in the pharyngeal tissue throughout maturation, it was extremely high in the oocytes during the spawning period. Meanwhile, 5,6,11-trideoxyTTX was almost undetectable in the pharyngeal part throughout the maturation but was very abundant in the oocytes during spawning. 11-norTTX-6(S)-ol consistently localized in the pharyngeal tissue. Although the localization of TTX and its analogues was approximately consistent with the MS imaging data, TTX and 11-norTTX-6(S)-ol were found to be highly localized in the parenchyma surrounding the pharynx, which suggests the parenchyma is involved in the accumulation and production of TTXs.


Asunto(s)
Platelmintos , Animales , Masculino , Tetrodotoxina , Cromatografía Liquida/métodos , Distribución Tisular , Espectrometría de Masas en Tándem/métodos , Semen/metabolismo , Larva/metabolismo
8.
Sci Rep ; 12(1): 6720, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35469048

RESUMEN

Growth hormone (GH) transgenesis can be used to manipulate the growth performance of fish and mammals. In this study, homozygous and hemizygous GH-transgenic amago salmon (Oncorhynchus masou ishikawae) derived from a single female exhibited hypoglycemia. Proteomic and signal network analyses using iTRAQ indicated a decreased NAD+/NADH ratio in transgenic fish, indicative of reduced mitochondrial ND1 function and ROS levels. Mitochondrial DNA sequencing revealed that approximately 28% of the deletion mutations in the GH homozygous- and hemizygous-female-derived mitochondrial DNA occurred in ND1. These fish also displayed decreased ROS levels. Our results indicate that GH transgenesis in amago salmon may induce specific deletion mutations that are maternally inherited over generations and alter energy production.


Asunto(s)
Hormona de Crecimiento Humana , Oncorhynchus , Animales , Animales Modificados Genéticamente , ADN Mitocondrial/genética , Femenino , Técnicas de Transferencia de Gen , Hormona del Crecimiento/genética , Hormona de Crecimiento Humana/genética , Mamíferos/genética , Herencia Materna , Mutación , Proteómica , Especies Reactivas de Oxígeno , Salmón/genética
9.
J Nutr Sci Vitaminol (Tokyo) ; 68(1): 23-31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228492

RESUMEN

Skeletal muscle is the largest organ in the body and has a broad range of plasticity, undergoing atrophy in response to aging or disease and hypertrophy in response to nutritional supplements or exercise. Loss of skeletal muscle mass and force increases the risk of falls, impairs mobility, and leads to reduced quality of life. In a previous study, we demonstrated that taking in Alaska pollock protein (APP) for only 7 d increased the gastrocnemius muscle mass in rats. This study was conducted to identify hypertrophic myofibers and analyze how hypertrophy occurs within them. Twenty male rats were randomly divided into two groups and administered a diet of casein or APP for 7 d. The expression of each myosin heavy chain (MyHC) isoform in a cross-sectional area was then measured. MyHC IIb and IIx isoforms exhibited hypertrophic features in the gastrocnemius muscles of the APP-fed rats. Furthermore, comprehensive proteomic analyses were conducted to identify changes in protein expression due to muscle hypertrophy. Our results, evaluated by pathway analyses, indicated that the activity of the growth factor signaling pathway was significantly impacted by APP consumption. Moreover, APP could promote protein synthesis by activating the protein kinase B/mechanistic target of the rapamycin signaling pathway, which is also promoted by exercise.


Asunto(s)
Proteínas de Peces , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas de Peces/metabolismo , Hipertrofia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Nutrients ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35276908

RESUMEN

Our previous studies suggested that Alaska pollack protein (APP) intake increases skeletal muscle mass and that it may cause a slow-to-fast shift in muscle fiber type in rats fed a high-fat diet after 56 days of feeding. In this study, we explored whether dietary APP induces acute and sustainable skeletal muscle hypertrophy in rats fed a normal-fat diet. Male 5-week-old Sprague-Dawley rats were divided into four groups and fed a purified ingredient-based high-fat diet or a purified ingredient-based normal-fat diet with casein or APP, containing the same amount of crude protein. Dietary APP significantly increased gastrocnemius muscle mass (105~110%) after 2, 7 days of feeding, regardless of dietary fat content. Rats were separated into two groups and fed a normal-fat diet with casein or APP. Dietary APP significantly increased gastrocnemius muscle mass (110%) after 56 days of feeding. Dietary APP significantly increased the cross-sectional area of the gastrocnemius skeletal muscle and collagen-rich connective tissue after 7 days of feeding. It decreased the gene expression of Mstn /Myostatin, Trim63/MuRF1, and Fbxo32/atrogin-1, but not other gene expression, such as serum IGF-1 after 7 days of feeding. No differences were observed between casein and APP groups with respect to the percentage of Type I, Type IIA, and Type IIX or IIB fibers, as determined by myosin ATPase staining after 7 days of feeding. In the similar experiment, the puromycin-labeled peptides were not different between dietary casein and APP after 2 days of feeding. These results demonstrate that APP induces acute and sustainable skeletal muscle hypertrophy in rats, regardless of dietary fat content. Dietary APP, as a daily protein source, may be an approach for maintaining or increasing muscle mass.


Asunto(s)
Proteínas en la Dieta , Músculo Esquelético , Alaska , Animales , Dieta Alta en Grasa/efectos adversos , Proteínas en la Dieta/farmacología , Hipertrofia , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Biosci Biotechnol Biochem ; 86(6): 730-738, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35285857

RESUMEN

Muscle atrophy is a major health problem that needs effective prevention and treatment approaches. Chronic exercise, an effective treatment strategy for atrophy, promotes muscle hypertrophy, which leads to dynamic metabolic changes; however, the metabolic changes vary among myofiber types. To investigate local metabolic changes due to chronic exercise, we utilized comprehensive proteome and mass spectrometry (MS) imaging analyses. Our training model exhibited hypertrophic features only in glycolytic myofibers. The proteome analyses demonstrated that exercise promoted anabolic pathways, such as protein synthesis, and significant changes in lipid metabolism, but not in glucose metabolism. Furthermore, the fundamental energy sources, glycogen, neutral lipids, and ATP, were sensitive to exercise, and the changes in these sources differed between glycolytic and oxidative myofibers. MS imaging revealed that the lipid composition differs among myofibers; arachidonic acid might be an effective target for promoting lipid metabolism during muscle hypertrophy in oxidative myofibers.


Asunto(s)
Músculo Esquelético , Proteoma , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Espectrometría de Masas , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo
12.
J Oleo Sci ; 70(7): 937-946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193670

RESUMEN

Muscle atrophy refers to skeletal muscle loss and dysfunction that affects glucose and lipid metabolism. Moreover, muscle atrophy is manifested in cancer, diabetes, and obesity. In this study, we focused on lipid metabolism during muscle atrophy. We observed that the gastrocnemius muscle was associated with significant atrophy with 8 days of immobilization of hind limb joints and that muscle atrophy occurred regardless of the muscle fiber type. Further, we performed lipid analyses using thin layer chromatography, liquid chromatography-mass spectrometry, and mass spectrometry imaging. Total amounts of triacylglycerol, phosphatidylserine, and sphingomyelin were found to be increased in the immobilized muscle. Additionally, we found that specific molecular species of phosphatidylserine, phosphatidylcholine, and sphingomyelin were increased by immobilization. Furthermore, the expression of adipose triglyceride lipase and the activity of cyclooxygenase-2 were significantly reduced by atrophy. From these results, it was revealed that lipid accumulation and metabolic changes in specific fatty acids occur during disuse muscle atrophy. The present study holds implications in validating preventive treatment strategies for muscle atrophy.


Asunto(s)
Atrofia Muscular/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Restricción Física/fisiología , Esfingomielinas/metabolismo , Triglicéridos/metabolismo , Animales , Cromatografía Liquida , Cromatografía en Capa Delgada , Ciclooxigenasa 2/metabolismo , Lipasa/metabolismo , Masculino , Espectrometría de Masas , Músculo Esquelético/química , Fosfatidilcolinas/análisis , Fosfatidilserinas/análisis , Ratas Sprague-Dawley , Restricción Física/efectos adversos , Esfingomielinas/análisis , Triglicéridos/análisis
13.
Food Funct ; 12(2): 825-833, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33399617

RESUMEN

Aging induces drastic changes in muscle mass and function (sarcopenia); however, the detailed mechanisms underlying sarcopenia remain poorly understood. Recent studies suggested that age-related increases in oxidative stress induce muscle atrophy. In this study, we investigated the effect of 6-month supplementation of antioxidants, specifically piceatannol (PIC) and enzymatically modified isoquercitrin (EMIQ), on age-related physiological changes, including skeletal muscle weight and quality, in 25-month-old (OLD) mice, compared to in 4-month-old (young, YNG) C57BL/6J mice. Muscle weight corrected by body weight significantly declined in OLD mice, compared to in YNG mice. The control OLD mice also showed changes in the expression of genes related to muscle fiber type, reduced locomotor activity, and increased oxidative stress markers in blood. Consistent with the muscle weight and quality changes, whole-body fat oxidation during sedentary conditions and exercise periods in control OLD mice was significantly lower than that in YNG mice. Interestingly, compared to the control OLD mice, the PIC- or EMIQ-fed OLD mice showed higher fat oxidation. Furthermore, EMIQ, but not PIC, increased locomotor activity, the expression of genes encoding antioxidant enzymes, and suppressed the carbonylated protein in the skeletal muscle of OLD mice. These results suggested that chronic antioxidant intake could alleviate aging-related muscle function changes.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Músculo Esquelético/efectos de los fármacos , Sarcopenia/prevención & control , Animales , Antioxidantes/administración & dosificación , Suplementos Dietéticos , Espectrometría de Masas , Ratones , Actividad Motora , Estrés Oxidativo/efectos de los fármacos
14.
J Mass Spectrom ; 55(12): e4670, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33118227

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is an effective tool for investigating the distribution of molecules. However, cryosections are made from non-fixed tissues, causing difficulties in preparing sections from fragile, high-water content tissues such as those from tadpoles. Here, we introduce a new method for preparing cryosections using an adhesive tape followed by transfer onto glass slides for MALDI-MS imaging. Signals obtained from the transferred sections were higher than those from other sections, and the transferred sections had high optical quality. This novel approach could be an effective tool for MALDI-MS imaging of aquatic animals.


Asunto(s)
Técnicas Histológicas/métodos , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Organismos Acuáticos/fisiología , Larva/citología , Larva/fisiología , Ranidae , Sensibilidad y Especificidad
15.
Aquat Toxicol ; 228: 105623, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32956954

RESUMEN

Trace concentrations of a number of pharmaceutically active compounds have been detected in the aquatic environment in many countries, where they are thought to have the potential to exert adverse effects on non-target organisms. Amiodarone (AMD) is one such high-risk compound commonly used in general hospitals. AMD is known to alter normal thyroid hormone (TH) function, although little information is available regarding the specific mechanism by which this disruption occurs. Anuran tadpole metamorphosis is a TH-controlled developmental process and has proven to be useful as a screening tool for environmental pollutants suspected of disrupting TH functions. In the present study, our objective was to clarify the effects of AMD on Xenopus metamorphosis as well as to assess the bioconcentration of this pharmaceutical in the liver. We found that AMD suppressed spontaneous metamorphosis, including tail regression and hindlimb elongation in pro-metamorphic stage tadpoles, which is controlled by endogenous circulating TH, indicating that AMD is a TH antagonist. In transgenic X. laevis tadpoles carrying plasmid DNA containing TH-responsive element (TRE) and a 5'-upstream promoter region of the TH receptor (TR) ßA1 gene linked to a green fluorescent protein (EGFP) gene, triiodothyronine (T3) exposure induced a strong EGFP expression in the hind limbs, whereas the addition of AMD to T3 suppressed EGFP expression, suggesting that this drug interferes with the binding of T3 to TR, leading to the inhibition of TR-mediated gene expression. We also found AMD to be highly bioconcentrated in the liver of pro-metamorphic X. tropicalis tadpoles, and we monitored hepatic accumulation of this drug using mass spectrometry imaging (MSI). Our findings suggest that AMD imposes potential risk to aquatic wildlife by disrupting TH homeostasis, with further possibility of accumulating in organisms higher up in the food chain.


Asunto(s)
Amiodarona/toxicidad , Bioacumulación , Disruptores Endocrinos/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Amiodarona/metabolismo , Animales , Disruptores Endocrinos/metabolismo , Miembro Posterior/efectos de los fármacos , Larva/genética , Larva/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/genética , Triyodotironina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Xenopus laevis
16.
PLoS One ; 15(8): e0237095, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32756599

RESUMEN

Regular exercise is an effective strategy that is used to prevent and treat obesity as well as type 2 diabetes. Exercise-induced myokine secretion is considered a mechanism that coordinates communication between muscles and other organs. In order to examine the possibility of novel communications from muscle to adipose tissue mediated by myokines, we treated 3T3-L1 adipocytes with C2C12 myotube electrical pulse stimulation-conditioned media (EPS-CM), using a C2C12 myotube contraction system stimulated by an electrical pulse. Continuous treatment with myotube EPS-CM promoted adipogenesis of 3T3-L1 pre-adipocytes via the upregulation of the peroxisome proliferator-activated receptor-gamma (PPARγ) 2 and PPARγ-regulated gene expression. Furthermore, our results revealed that myotube EPS-CM induces lipolysis and secretion of adiponectin in mature adipocytes. EPS-CM obtained from a C2C12 myoblast culture did not induce such changes in these genes, suggesting that contraction-induced myokine(s) secretion occurs particularly in differentiated myotubes. Thus, contraction-induced secretion of myokine(s) promotes adipogenesis and lipid metabolism in 3T3-L1 adipocytes. These findings suggest the possibility that skeletal muscle communicates to adipose tissues during exercise, probably by the intermediary of unidentified myokines.


Asunto(s)
Adipocitos/citología , Diferenciación Celular , Lipólisis , Fibras Musculares Esqueléticas/metabolismo , Células 3T3 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis , Adiponectina/metabolismo , Animales , Comunicación Celular , Medios de Cultivo Condicionados/farmacología , Ratones , PPAR gamma/metabolismo
17.
Sci Rep ; 10(1): 11737, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678123

RESUMEN

The threat of predation is a driving force in the evolution of animals. We have previously reported that Xenopus laevis enhanced their tail muscles and increased their swimming speeds in the presence of Japanese larval salamander predators. Herein, we investigated the induced gene expression changes in the brains of tadpoles under the threat of predation using 3'-tag digital gene expression profiling. We found that many muscle genes were expressed after 24 h of exposure to predation. Ingenuity pathway analysis further showed that after 24 h of a predation threat, various signal transduction genes were stimulated, such as those affecting the actin cytoskeleton and CREB pathways, and that these might increase microtubule dynamics, axonogenesis, cognition, and memory. To verify the increase in microtubule dynamics, DiI was inserted through the tadpole nostrils. Extension of the axons was clearly observed from the nostril to the diencephalon and was significantly increased (P ≤ 0.0001) after 24 h of exposure to predation, compared with that of the control. The dynamic changes in the signal transductions appeared to bring about new connections in the neural networks, as suggested by the microtubule dynamics. These connections may result in improved memory and cognition abilities, and subsequently increase survivability.


Asunto(s)
Axones/fisiología , Encéfalo/fisiología , Xenopus laevis/fisiología , Animales , Biomarcadores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hibridación in Situ , Larva , Transducción de Señal
18.
Foods ; 9(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244617

RESUMEN

Consumption of fish is rapidly increasing worldwide. It is important to evaluate fish fillet quality because fish undergoes physical and chemical changes during frozen storage. Fish fillets exhibit formaldehyde (FA) accumulation from the decomposition of trimethylamine N-oxide. FA is a powerful protein denaturant; thus, it is important to avoid FA buildup during fish processing to preserve fish quality, especially texture. To determine where FA accumulates, in order to maintain the quality of fish fillets, we performed matrix-assisted laser desorption/ionization mass spectrometry imaging, aiming to identify muscle-derived peptides, which reflect conditions such as denaturation and/or aggregation. We used frozen sections from which lipophilic molecules were washed out and detected various peptide peaks. Furthermore, we tried to identify indices to represent fish fillet softening by protease treatment. We could detect characteristic peaks owing to FA and protease treatment; the findings were consistent with the results of texture profiles showing fish fillet's real solidity. These molecules might thus serve as effective markers to evaluate fish fillet quality.

19.
Sci Rep ; 10(1): 656, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959858

RESUMEN

Giant clams have evolved to maximize sunlight utilization by their photosymbiotic partners, while affording them protection from harmful ultraviolet (UV) light. The presence of UV absorbing substances in the mantle is thought to be critical for light protection; however, the exact localization of such compounds remains unknown. Here, we applied a combination of UV liquid chromatography (LC), LC-mass spectrometry (MS), MS imaging, and UV micrography to localize UV absorbing substances in the giant clam Tridacna crocea. LC-MS analysis revealed that the animal contained three classes of mycosporines: progenitor, primary, and secondary mycosporines. MS imaging revealed that primary and secondary mycosporines were localized in the outermost layer of the mantle; whereas progenitor mycosporines were distributed throughout the mantle tissue. These findings were consistent with the results of UV micrography, which revealed that the surface layer of the mantle absorbed UV light at 320 ± 10 nm. This is the first report indicating that progenitor and primary mycosporines are metabolized to secondary mycosporines by the giant clam and that they are differentially localized in the surface layer of the mantle to protect the animal from UV light.


Asunto(s)
Bivalvos/metabolismo , Cromatografía Liquida/métodos , Ciclohexanoles/metabolismo , Espectrometría de Masas/métodos , Protectores Solares/metabolismo , Animales , Protectores Solares/análisis , Rayos Ultravioleta
20.
Foods ; 8(12)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810360

RESUMEN

Food contains various compounds, and there are many methods available to analyze each of these components. However, the large amounts of low-molecular-weight metabolites in food, such as amino acids, organic acids, vitamins, lipids, and toxins, make it difficult to analyze the spatial distribution of these molecules. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is a two-dimensional ionization technology that allows the detection of small metabolites in tissue sections without requiring purification, extraction, separation, or labeling. The application of MALDI-MS imaging in food analysis improves the visualization of these compounds to identify not only the nutritional content but also the geographical origin of the food. In this review, we provide an overview of some recent applications of MALDI-MS imaging, demonstrating the advantages and prospects of this technology compared to conventional approaches. Further development and enhancement of MALDI-MS imaging is expected to offer great benefits to consumers, researchers, and food producers with respect to breeding improvement, traceability, the development of value-added foods, and improved safety assessments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...