Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EFSA J ; 22(9): e8985, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253337

RESUMEN

The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of curdlan as a new food additive used as firming and gelling agent, stabiliser, thickener. Curdlan is a high molecular weight polysaccharide consisting of ß-1,3-linked glucose units, produced by fermentation from Rhizobium radiobacter biovar 1 strain NTK-u. The toxicological dataset consisted of sub-chronic, chronic and carcinogenicity, reproductive and developmental toxicity studies as well as genotoxicity. In vivo data showed that curdlan is not absorbed as such but is extensively metabolised by the gut microbiota into CO2 and other innocuous compounds. Curdlan was not genotoxic and was well-tolerated with no overt organ-specific toxicity. Effects observed at very high doses of curdlan, such as decreased growth and increased cecum weight, are common for indigestible bulking compounds and therefore considered physiological responses. In a combined three-generation reproductive and developmental toxicity study, decreased pup weight was observed during lactation at 7500 mg curdlan/kg body weight (bw) per day, the highest dose tested. The Panel considered the observed effects as treatment-related and adverse, although likely secondary to nutritional imbalance and identified a conservative no observed adverse effect level (NOAEL) of 2500 mg/kg bw per day. Despite the limitations noted in the dataset, the Panel was able to conclude applying the margin of exposure (MOE) approach. Given that curdlan and its break-down products are not absorbed and that the identified adverse effect is neither systemic nor local, no adjustment factor was deemed necessary. Thus, an MOE of at least 1 was considered sufficient. The highest exposure estimate was 1441 mg/kg bw per day in toddlers at the 95th percentile of the proposed maximum use level exposure assessment scenario. The Panel concluded that there is no safety concern for the use of curdlan as a food additive at the proposed uses and use levels.

2.
Regul Toxicol Pharmacol ; 153: 105701, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251126

RESUMEN

Advances in biosciences, chemistry, technology, and computer sciences have resulted in the unparalleled development of candidate New Approach Methodologies over the last few years. Many of these are potentially invaluable in the safety assessment of chemicals, but very few have been adopted for regulatory decision making. There is an immediate opportunity to use NAMs in safety assessment where the vision is to be able to predict risk more rapidly, accurately, and efficiently to further assure consumer safety. In order to achieve this, the UK Food Standards Agency (FSA) and the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) have developed a roadmap towards acceptance and integration of these new approach methodologies into safety and risk assessments for regulatory decision making. The roadmap provides a UK blueprint for the transition of NAMs from the research laboratory to their use in regulatory decision making. This will require close collaboration across disciplines (chemists, toxicologists, informaticians, risk assessors and others), and across chemical sectors, to develop, verify and utilise appropriate models. Linking up internationally, and harmonization will be fundamental.

3.
EFSA J ; 22(8): e8914, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099616

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Lietpak (EU register number RECYC327), which uses the EREMA MPR technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food, derived from the exposure scenario for infants, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

4.
EFSA J ; 22(7): e8918, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071238

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Guolong (EU register number RECYC323), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

5.
EFSA J ; 22(7): e8877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974925

RESUMEN

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Penicillium caseifulvum strain AE-LRF by Amano Enzyme Inc. The food enzyme was free from viable cells of the production organism. It is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.013 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 69 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 5308. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. However, the Panel noted that traces of ■■■■■, used in the manufacture of the triacylglycerol lipase, may be found in the food enzyme. The Panel considered that the risk of allergic reactions upon dietary exposure could not be excluded, particularly in individuals sensitised to fish. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

6.
EFSA J ; 22(7): e8871, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957750

RESUMEN

The food enzyme α-l-rhamnosidase (α-l-rhamnoside rhamnohydrolase; EC 3.2.1.40) is produced with Penicillium adametzii strain AE-HP by Amano Enzymes Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in two food manufacturing processes. Subsequently, the applicant has requested to extend its use to include two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.022 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level reported in the previous opinion (300 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 13,636. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

7.
EFSA J ; 22(7): e8867, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957751

RESUMEN

The food enzyme glutaminase (l-glutamine amidohydrolase; EC 3.5.1.2) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-GT by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in five food manufacturing processes. Subsequently, the applicant requested to extend its use to thirteen additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eighteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining sixteen processes. Dietary exposure was calculated to be up to 0.678 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

8.
EFSA J ; 22(7): e8876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957752

RESUMEN

The food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.8) is produced with the non-genetically modified Aspergillus niger strain PHY93-08 by Shin Nihon Chemical Co., Ltd. The food enzyme is free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two of the food manufacturing processes, dietary exposure was calculated only for the remaining seven processes. It was estimated to be up to 0.763 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise safety concerns. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2560 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3355. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

9.
EFSA J ; 22(7): e8868, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966135

RESUMEN

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in thirteen food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of fifteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining thirteen processes. Dietary exposure was calculated to be up to 35.251 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

10.
EFSA J ; 22(7): e8873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966132

RESUMEN

The food enzyme subtilisin (EC 3.4.21.62) is produced with the non-genetically modified Bacillus paralicheniformis strain AP-01 by Nagase (Europa) GmbH. It was considered free from viable cells of the production organism. The food enzyme is intended to be used in five food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in one process, dietary exposure was calculated only for the remaining four food manufacturing processes. It was estimated to be up to 0.875 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme has the capacity to produce bacitracin and thus failed to meet the requirements of the Qualified Presumption of Safety approach. Bacitracin was detected in the industrial fermentation medium but not in the food enzyme itself. However, the limit of detection of the analytical method used for bacitracin was not sufficient to exclude the possible presence of bacitracin at a level representing a risk for the development of antimicrobial resistant bacteria. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and twenty-eight matches with respiratory allergens, one match with a contact allergen and two matches with food allergens (melon and pomegranate) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to melon or pomegranate, cannot be excluded, but would not exceed the risk of consuming melon or pomegranate. Based on the data provided, the Panel could not exclude the presence of bacitracin, a medically important antimicrobial, and consequently the safety of this food enzyme could not be established.

11.
EFSA J ; 22(7): e8878, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966136

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. The recycled sheets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, excluded drinking water and beverages, for long-term storage at room temperature, with or without hotfill. Based on the limited data available, the Panel concluded that the information submitted to EFSA was inadequate to demonstrate that the recycling process Fucine Film is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

12.
EFSA J ; 22(7): e8872, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966133

RESUMEN

The food enzyme ß-glucosidase (ß-D-glucoside glucohydrolase; EC 3.2.1.21) is produced with the non-genetically modified Penicillium guanacastense strain AE-GLY by Amano Enzyme Inc. The food enzyme is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 4.054 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 943 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 233. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 22(7): e8915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050022

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process KGL (EU register number RECYC326), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

14.
EFSA J ; 22(7): e8916, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050028

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Palamidis (EU register number RECYC325), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

15.
EFSA J ; 22(7): e8917, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050026

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Ecopacking (EU register number RECYC324), which uses the EREMA Basic technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor ■■■■■ before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

16.
EFSA J ; 22(7): e8879, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081816

RESUMEN

In the context of entry into force of Regulation (EU) 2022/1616, EFSA updated the scientific guidance to assist applicants in the preparation of applications for the authorisation or for the modification of an existing authorisation of a 'post-consumer mechanical PET' recycling process (as defined in Annex I of Regulation (EU) 2022/1616) intended to be used for manufacturing materials and articles intended to come into contact with food. This Guidance describes the evaluation criteria and the scientific evaluation approach that EFSA will apply to assess the decontamination capability of recycling processes, as well as the information required to be included in an application dossier. The principle of the scientific evaluation approach is to apply the decontamination efficiency of a recycling process, obtained from a challenge test with surrogate contaminants, to a reference contamination level for post-consumer PET, set at 3 mg/kg PET for a contaminant resulting from possible misuse. The resulting residual concentration of each surrogate in recycled PET is then compared to a modelled concentration in PET that is calculated using generally recognised conservative migration models, such that the related migration does not give rise to a dietary exposure exceeding 0.0025 µg/kg body weight (bw) per day. This is the lowest threshold for toxicological concern (TTC) value, i.e. for potential genotoxicity, below which the risk to human health would be negligible. The information to be provided in the applications relates to: the recycling process (i.e. collection and pre-processing of the input, decontamination process, post-processing and intended use); the determination of the decontamination efficiency by the challenge test; the self-evaluation of the recycling process. On the basis of the submitted data, EFSA will assess the safety of the mechanical PET recycling process.

17.
EFSA J ; 22(7): e8874, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010862

RESUMEN

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

18.
EFSA J ; 22(7): e8869, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993590

RESUMEN

The food enzyme laccase (benzenediol:oxygen oxidoreductase, i.e. EC 1.10.3.2) is produced with the non-genetically modified Trametes hirsuta strain AE-OR by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in six food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.030 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level previously reported (862 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 28,733. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

19.
EFSA J ; 22(6): e8822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946918

RESUMEN

The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of soy leghemoglobin from genetically modified Komagataella phaffii as a food additive in accordance with Regulation (EC) No 1331/2008. The proposed food additive, LegH Prep, is intended to be used as a colour in meat analogue products. The yeast Komagataella phaffii strain MXY0541 has been genetically modified to produce soy leghemoglobin; the safety of the genetic modification is under assessment by the EFSA GMO Panel (EFSA-GMO-NL-2019-162). The amount of haem iron provided by soy leghemoglobin from its proposed uses in meat analogue products is comparable to that provided by similar amounts of different types of meat. The exposure to iron from the proposed food additive, both at the mean and 95th percentile exposure, will be below the 'safe levels of intake' established by the NDA Panel for all population groups. Considering that the components of the proposed food additive will be digested to small peptide, amino acids and haem B; the recipient (non GM) strain qualifies for qualified presumption of safety status; no genotoxicity concern has been identified and no adverse effects have been identified at the highest dose tested in the available toxicological studies, the Panel concluded that there was no need to set a numerical acceptable daily intake (ADI) and that the food additive does not raise a safety concern at the proposed use in food category 12.9 and maximum use level. The Panel concluded that the use of soy leghemoglobin from genetically modified Komagataella phaffii MXY0541 as a new food additive does not raise a safety concern at the proposed use and use level. This safety evaluation of the proposed food additive remains provisional subject to the ongoing safety assessment of the genetic modification of the production strain by the GMO Panel (EFSA-GMO-NL-2019-162).

20.
EFSA J ; 22(7): e8870, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962758

RESUMEN

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in eight food manufacturing processes. Subsequently, the applicant has requested to extend its use to include one additional process and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining seven processes. Dietary exposure was calculated to be up to 0.382 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA