Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 29(4): 1373-1379, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37488815

RESUMEN

Fast frame rates are desirable in scanning transmission electron microscopy for a number of reasons: controlling electron beam dose, capturing in situ events, or reducing the appearance of scan distortions. While several strategies exist for increasing frame rates, many impact image quality or require investment in advanced scan hardware. Here, we present an interlaced imaging approach to achieve minimal loss of image quality with faster frame rates that can be implemented on many existing scan controllers. We further demonstrate that our interlacing approach provides the best possible strain precision for a given electron dose compared with other contemporary approaches.

2.
J Phys Chem Lett ; 14(19): 4433-4439, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37141511

RESUMEN

For self-catalyzed nanowires (NWs), reports on how the catalytic droplet initiates successful NW growth are still lacking, making it difficult to control the yield and often accompanying a high density of clusters. Here, we have performed a systematic study on this issue, which reveals that the effective V/III ratio at the initial growth stage is a critical factor that governs the NW growth yield. To initiate NW growth, the ratio should be high enough to allow the nucleation to extend to the entire contact area between the droplet and substrate, which can elevate the droplet off of the substrate, but it should not be too high in order to keep the droplet. This study also reveals that the cluster growth between NWs is also initiated from large droplets. This study provides a new angle from the growth condition to explain the cluster formation mechanism, which can guide high-yield NW growth.

3.
Nature ; 602(7896): 240-244, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140385

RESUMEN

Ferroics, especially ferromagnets, can form complex topological spin structures such as vortices1 and skyrmions2,3 when subjected to particular electrical and mechanical boundary conditions. Simple vortex-like, electric-dipole-based topological structures have been observed in dedicated ferroelectric systems, especially ferroelectric-insulator superlattices such as PbTiO3/SrTiO3, which was later shown to be a model system owing to its high depolarizing field4-8. To date, the electric dipole equivalent of ordered magnetic spin lattices driven by the Dzyaloshinskii-Moriya interaction (DMi)9,10 has not been experimentally observed. Here we examine a domain structure in a single PbTiO3 epitaxial layer sandwiched between SrRuO3 electrodes. We observe periodic clockwise and anticlockwise ferroelectric vortices that are modulated by a second ordering along their toroidal core. The resulting topology, supported by calculations, is a labyrinth-like pattern with two orthogonal periodic modulations that form an incommensurate polar crystal that provides a ferroelectric analogue to the recently discovered incommensurate spin crystals in ferromagnetic materials11-13. These findings further blur the border between emergent ferromagnetic and ferroelectric topologies, clearing the way for experimental realization of further electric counterparts of magnetic DMi-driven phases.

4.
J Phys Chem C Nanomater Interfaces ; 125(26): 14338-14347, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34276869

RESUMEN

Self-catalyzed AlGaAs nanowires (NWs) and NWs with a GaAs quantum dot (QD) were monolithically grown on Si(111) substrates via solid-source molecular beam epitaxy. This growth technique is advantageous in comparison to the previously employed Au-catalyzed approach, as it removes Au contamination issues and renders the structures compatible with complementary metal-oxide-semiconductor (CMOS) technology applications. Structural studies reveal the self-formation of an Al-rich AlGaAs shell, thicker at the NW base and thinning towards the tip, with the opposite behavior observed for the NW core. Wide alloy fluctuations in the shell region are also noticed. AlGaAs NW structures with nominal Al contents of 10, 20, and 30% have strong room temperature photoluminescence, with emission in the range of 1.50-1.72 eV. Individual NWs with an embedded 4.9 nm-thick GaAs region exhibit clear QD behavior, with spatially localized emission, both exciton and biexciton recombination lines, and an exciton line width of 490 µeV at low temperature. Our results demonstrate the properties and behavior of the AlGaAs NWs and AlGaAs/GaAs NWQDs grown via the self-catalyzed approach for the first time and exhibit their potential for a range of novel applications, including nanolasers and single-photon sources.

5.
Nano Lett ; 21(13): 5722-5729, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34181433

RESUMEN

Axially stacked quantum dots (QDs) in nanowires (NWs) have important applications in nanoscale quantum devices and lasers. However, there is lack of study of defect-free growth and structure optimization using the Au-free growth mode. We report a detailed study of self-catalyzed GaAsP NWs containing defect-free axial GaAs QDs (NWQDs). Sharp interfaces (1.8-3.6 nm) allow closely stack QDs with very similar structural properties. High structural quality is maintained when up to 50 GaAs QDs are placed in a single NW. The QDs maintain an emission line width of <10 meV at 140 K (comparable to the best III-V QDs, including nitrides) after having been stored in an ambient atmosphere for over 6 months and exhibit deep carrier confinement (∼90 meV) and the largest reported exciton-biexciton splitting (∼11 meV) for non-nitride III-V NWQDs. Our study provides a solid foundation to build high-performance axially stacked NWQD devices that are compatible with CMOS technologies.

6.
Nano Lett ; 19(7): 4574-4580, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31189065

RESUMEN

The droplet consumption step in self-catalyzed III-V semiconductor nanowires can produce material that contains a high density of line defects. Interestingly, these defects are often associated with twin boundaries and have null Burgers vector, i.e., no long-range strain field. Here, we analyze their stability by considering the forces that act on them and use in situ aberration corrected scanning transmission electron microscopy (STEM) to observe their behavior in GaAsP nanowires (NWs) using short annealing cycles. Their movement appears to be consistent with the thermally activated single- or double-kink mechanisms of dislocation glide, with velocities that do not exceed 1 nm s-1. We find that motion of individual defects depends on their size, position, and surrounding environment and set an upper limit to activation energy around 2 eV. The majority of defects (>70%) are removed by our postgrowth annealing for several seconds at temperatures in excess of 640 °C, suggesting that in situ annealing during growth at lower temperatures would significantly improve material quality. The remaining defects do not move at all and are thermodynamically stable in the nanowire.

7.
ACS Nano ; 13(5): 5931-5938, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31067033

RESUMEN

Coaxial quantum wells (QWs) are ideal candidates for nanowire (NW) lasers, providing strong carrier confinement and allowing close matching of the cavity mode and gain medium. We report a detailed structural and optical study and the observation of lasing for a mixed group-V GaAsP NW with GaAs QWs. This system offers a number of potential advantages in comparison to previously studied common group-V structures ( e. g., AlGaAs/GaAs) including highly strained binary GaAs QWs, the absence of a lower band gap core region, and deep carrier potential wells. Despite the large lattice mismatch (∼1.7%), it is possible to grow defect-free GaAs coaxial QWs with high optical quality. The large band gap difference results in strong carrier confinement, and the ability to apply a high degree of compressive strain to the GaAs QWs is also expected to be beneficial for laser performance. For a non-fully optimized structure containing three QWs, we achieve low-temperature lasing with a low external (internal) threshold of 20 (0.9) µJ/cm2/pulse. In addition, a very narrow lasing line width of ∼0.15 nm is observed. These results extend the NW laser structure to coaxial III-V-V QWs, which are highly suitable as the platform for NW emitters.

8.
Nano Lett ; 19(6): 4158-4165, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31141668

RESUMEN

Quantum structures designed using nanowires as a basis are excellent candidates to achieve novel design architectures. Here, triplets of quantum wires (QWRs) that form at the core-shell interface of GaAsP-GaAsP nanowires are reported. Their formation, on only three of the six vertices of the hexagonal nanowire, is governed by the three-fold symmetry of the cubic crystal on the (111) plane. In twinned nanowires, the QWRs are segmented, to alternating vertices, forming quantum dots (QDs). Simulations confirm the possibility of QWR and QD-like behavior from the respective regions. Optical measurements confirm the presence of two different types of quantum emitters in the twinned individual nanowires. The possibility to control the relative formation of QWRs or QDs, and resulting emission wavelengths of the QDs, by controlling the twinning of the nanowire core, opens up new possibilities for designing nanowire devices.

9.
Small ; 15(3): e1803684, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30556282

RESUMEN

Nanowires (NWs) with radial p-i-n junction have advantages, such as large junction area and small influence from the surface states, which can lead to highly efficient material use and good device quantum efficiency. However, it is difficult to make high-quality core-shell NW devices, especially single NW devices. Here, the key factors during the growth and fabrication process that influence the quality of single core-shell p-i-n NW devices are studied using GaAs(P) NW photovoltaics as an example. By p-doping and annealing, good ohmic contact is achieved on NWs with a diameter as small as 50-60 nm. Single NW photovoltaics are subsequently developed and a record fill factor of 80.5% is shown. These results bring valuable information for making single NW devices, which can further benefit the development of high-density integration circuits.

10.
Nano Lett ; 18(10): 6397-6403, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205011

RESUMEN

The integration of optically active III-V and electronic-suitable IV materials on the same nanowire could provide a great potential for the combination of photonics and electronics in the nanoscale. In this Letter, we demonstrate the growth of GaAs/Ge core-shell nanowires on Si substrates by molecular beam epitaxy and investigate the radial and axial Ge epitaxy on GaAs nanowires in detail. High-quality core-shell nanowires with smooth side facets and dislocation-free, sharp interfaces are achieved. It is found that the low shell growth temperature leads to smoother side facets, while higher shell growth temperatures lead to more relaxed structures with significantly faceted sidewalls. The possibility of forming a III-V/IV heterostructure nanowire with a Ge section development in the axial direction of a GaAs nanowire using a Ga droplet is also revealed. These nanowires provide an ideal platform for nanoscale III-V/IV combination, which is promising for highly integrated photonic and electronic hybrid devices on a single chip.

11.
Nano Lett ; 17(8): 4946-4950, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28758401

RESUMEN

The growth of self-catalyzed core-shell nanowires (NWs) is investigated systematically using GaAs(P) NWs. The defects in the core NW are found to be detrimental for the shell growth. These defects are effectively eliminated by introducing beryllium (Be) doping during the NW core growth and hence forming Be-Ga alloy droplets that can effectively suppress the WZ nucleation and facilitate the droplet consumption. Shells with pure zinc-blende crystal quality and highly regular morphology are successfully grown on the defect-free NW cores and demonstrated an enhancement of one order of magnitude for room-temperature emission compared to that of the defective shells. These results provide useful information on guiding the growth of high-quality shell, which can greatly enhance the NW device performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...