Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7827, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535932

RESUMEN

Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tauon ~7.2 s and recovers with tauoff ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them.


Asunto(s)
Optogenética , Vesículas Sinápticas , Animales , Ratones , Vesículas Sinápticas/metabolismo , Pez Cebra , Transmisión Sináptica/fisiología , Caenorhabditis elegans/genética , Análisis por Conglomerados
2.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32211893

RESUMEN

The polyphosphoinositides (PPIn) are central regulatory lipids that direct membrane function in eukaryotic cells. Understanding how their synthesis is regulated is crucial to revealing these lipids' role in health and disease. PPIn are derived from the major structural lipid, phosphatidylinositol (PI). However, although the distribution of most PPIn has been characterized, the subcellular localization of PI available for PPIn synthesis is not known. Here, we used several orthogonal approaches to map the subcellular distribution of PI, including localizing exogenous fluorescent PI, as well as detecting lipid conversion products of endogenous PI after acute chemogenetic activation of PI-specific phospholipase and 4-kinase. We report that PI is broadly distributed throughout intracellular membrane compartments. However, there is a surprising lack of PI in the plasma membrane compared with the PPIn. These experiments implicate regulation of PI supply to the plasma membrane, as opposed to regulation of PPIn-kinases, as crucial to the control of PPIn synthesis and function at the PM.


Asunto(s)
Membrana Celular/metabolismo , Membranas Intracelulares/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Células COS , Chlorocebus aethiops , Diglicéridos/metabolismo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
3.
J Cell Biol ; 218(3): 1066-1079, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30591513

RESUMEN

Class I phosphoinositide 3-OH kinase (PI3K) signaling is central to animal growth and metabolism, and pathological disruption of this pathway affects cancer and diabetes. However, the specific spatial/temporal dynamics and signaling roles of its minor lipid messenger, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2), are not well understood. This owes principally to a lack of tools to study this scarce lipid. Here we developed a high-sensitivity genetically encoded biosensor for PI(3,4)P2, demonstrating high selectivity and specificity of the sensor for the lipid. We show that despite clear evidence for class II PI3K in PI(3,4)P2-driven function, the overwhelming majority of the lipid accumulates through degradation of class I PI3K-produced PIP3 However, we show that PI(3,4)P2 is also subject to hydrolysis by the tumor suppressor lipid phosphatase PTEN. Collectively, our results show that PI(3,4)P2 is potentially an important driver of class I PI3K-driven signaling and provides powerful new tools to begin to resolve the biological functions of this lipid downstream of class I and II PI3K.


Asunto(s)
Técnicas Biosensibles , Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Células HeLa , Humanos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/genética
5.
PLoS One ; 13(6): e0198454, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870544

RESUMEN

Phosphoinositide (PtdInsP) lipids recruit effector proteins to membranes to mediate a variety of functions including signal transduction and membrane trafficking. Each PtdInsP binds to a specific set of effectors through characteristic protein domains such as the PH, FYVE and PX domains. Domains with high affinity for a single PtdInsP species are useful as probes to visualize the distribution and dynamics of that PtdInsP. The endolysosomal system is governed by two primary PtdInsPs: phosphatidylinositol 3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2], which are thought to localize and control early endosomes and lysosomes/late endosomes, respectively. While PtdIns(3)P has been analysed with mammalian-derived PX and FYVE domains, PtdIns(3,5)P2 indicators remain controversial. Thus, complementary probes against these PtdInsPs are needed, including those originating from non-mammalian proteins. Here, we characterized in mammalian cells the dynamics of the PH domain from PH-containing protein-1 from the parasite Toxoplasma gondii (TgPH1), which was previously shown to bind PtdIns(3,5)P2 in vitro. However, we show that TgPH1 retains membrane-binding in PIKfyve-inhibited cells, suggesting that TgPH1 is not a viable PtdIns(3,5)P2 marker in mammalian cells. Instead, PtdIns(3)P depletion using pharmacological and enzyme-based assays dissociated TgPH1 from membranes. Indeed, TgPH1 co-localized with Rab5-positive early endosomes. In addition, TgPH1 co-localized and behaved similarly to the PX domain of p40phox and FYVE domain of EEA1, which are commonly used as PtdIns(3)P indicators. Collectively, TgPH1 offers a complementary reporter for PtdIns(3)P derived from a non-mammalian protein and that is distinct from commonly employed PX and FYVE domain-based probes.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Toxoplasma/metabolismo , Animales , Células COS , Chlorocebus aethiops , Endosomas/metabolismo , Células HeLa , Humanos , Ratones , Fosfoproteínas/metabolismo , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Células RAW 264.7 , Toxoplasma/química , Proteínas de Unión al GTP rab5/metabolismo
6.
Mol Biol Cell ; 29(13): 1526-1532, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29953345

RESUMEN

Lipids convey both structural and functional properties to eukaryotic membranes. Understanding the basic lipid composition and the dynamics of these important molecules, in the context of cellular membranes, can shed light on signaling, metabolism, trafficking, and even membrane identity. The development of genetically encoded lipid biosensors has allowed for the visualization of specific lipids inside individual, living cells. However, a number of caveats and considerations have emerged with the overexpression of these biosensors. In this Technical Perspective, we provide a current list of available genetically encoded lipid biosensors, together with criteria that determine their veracity. We also provide some suggestions for the optimal utilization of these biosensors when both designing experiments and interpreting results.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Genéticas , Lípidos/química , Animales , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador
7.
Elife ; 72018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29461204

RESUMEN

Gradients of PtdIns4P between organelle membranes and the endoplasmic reticulum (ER) are thought to drive counter-transport of other lipids via non-vesicular traffic. This novel pathway requires the SAC1 phosphatase to degrade PtdIns4P in a 'cis' configuration at the ER to maintain the gradient. However, SAC1 has also been proposed to act in 'trans' at membrane contact sites, which could oppose lipid traffic. It is therefore crucial to determine which mode SAC1 uses in living cells. We report that acute inhibition of SAC1 causes accumulation of PtdIns4P in the ER, that SAC1 does not enrich at membrane contact sites, and that SAC1 has little activity in 'trans', unless a linker is added between its ER-anchored and catalytic domains. The data reveal an obligate 'cis' activity of SAC1, supporting its role in non-vesicular lipid traffic and implicating lipid traffic more broadly in inositol lipid homeostasis and function.


Asunto(s)
Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA