Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(4): e4265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380597

RESUMEN

Anthropogenic climate change has increased the frequency of drought, wildfire, and invasions of non-native species. Although high-severity fires linked to drought can inhibit recovery of native vegetation in forested ecosystems, it remains unclear how drought impacts the recovery of other plant communities following wildfire. We leveraged an existing rainfall manipulation experiment to test the hypothesis that reduced precipitation, fuel load, and fire severity convert plant community composition from native shrubs to invasive grasses in a Southern California coastal sage scrub system. We measured community composition before and after the 2020 Silverado wildfire in plots with three rainfall treatments. Drought reduced fuel load and vegetation cover, which reduced fire severity. Native shrubs had greater prefire cover in added water plots compared to reduced water plots. Native cover was lower and invasive cover was higher in postfire reduced water plots compared to postfire added and ambient water plots. Our results demonstrate the importance of fuel load on fire severity and plant community composition on an ecosystem scale. Management should focus on reducing fire frequency and removing invasive species to maintain the resilience of coastal sage scrub communities facing drought. In these communities, controlled burns are not recommended as they promote invasive plants.


Asunto(s)
Especies Introducidas , Incendios Forestales , Ecosistema , Sequías , Plantas , Agua
2.
Nature ; 621(7977): 105-111, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612501

RESUMEN

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Asunto(s)
Aclimatación , Calor Extremo , Bosques , Fotosíntesis , Árboles , Clima Tropical , Aclimatación/fisiología , Australia , Brasil , Calor Extremo/efectos adversos , Calentamiento Global , Fotosíntesis/fisiología , Puerto Rico , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Árboles/fisiología , Hojas de la Planta/fisiología , Incertidumbre
3.
Proc Natl Acad Sci U S A ; 120(15): e2201954120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011220

RESUMEN

Wildfire modifies the short- and long-term exchange of carbon between terrestrial ecosystems and the atmosphere, with impacts on ecosystem services such as carbon uptake. Dry western US forests historically experienced low-intensity, frequent fires, with patches across the landscape occupying different points in the fire-recovery trajectory. Contemporary perturbations, such as recent severe fires in California, could shift the historic stand-age distribution and impact the legacy of carbon uptake on the landscape. Here, we combine flux measurements of gross primary production (GPP) and chronosequence analysis using satellite remote sensing to investigate how the last century of fires in California impacted the dynamics of ecosystem carbon uptake on the fire-affected landscape. A GPP recovery trajectory curve of more than five thousand fires in forest ecosystems since 1919 indicated that fire reduced GPP by [Formula: see text] g C m[Formula: see text] y[Formula: see text]([Formula: see text]) in the first year after fire, with average recovery to prefire conditions after [Formula: see text] y. The largest fires in forested ecosystems reduced GPP by [Formula: see text] g C m[Formula: see text] y[Formula: see text] (n = 401) and took more than two decades to recover. Recent increases in fire severity and recovery time have led to nearly [Formula: see text] MMT CO[Formula: see text] (3-y rolling mean) in cumulative forgone carbon uptake due to the legacy of fires on the landscape, complicating the challenge of maintaining California's natural and working lands as a net carbon sink. Understanding these changes is paramount to weighing the costs and benefits associated with fuels management and ecosystem management for climate change mitigation.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , California , Carbono
4.
Sci Total Environ ; 876: 162836, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36924953

RESUMEN

Forest restoration through mechanical thinning, prescribed burning, and other management actions is vital to improving forest resilience to fire and drought across the Western United States, and yields benefits that can be monetized, including improvements in water supply and hydropower. Using California's Sierra Nevada as a study area, we assess the water and energy benefits of forest-restoration projects. By using a scalable top-down approach to track annual evapotranspiration following forest disturbance, coupled with hydropower simulations that include energy-price information, and marginal prices for water sales, we project the potential economic benefits of hydropower and water sales accruing to water-rights holders. The results found that water-related benefits from strategically planned fuels-reduction treatments now being carried out can be sufficient to offset costs of management actions aimed at forest restoration, especially in the face of climate change. Our findings justified investments in restoring forests and reinforce the central role of water and hydropower providers in partnerships for management of source-water watersheds. Results also highlighted the importance of accurate, scalable data and tools from the hydrology and water-resources community.

5.
Glob Chang Biol ; 28(22): 6789-6806, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36093912

RESUMEN

Nature-based climate solutions are a vital component of many climate mitigation strategies, including California's, which aims to achieve carbon neutrality by 2045. Most carbon offsets in California's cap-and-trade program come from improved forest management (IFM) projects. Since 2012, various landowners have set up IFM projects following the California Air Resources Board's IFM protocol. As many of these projects approach their 10th year, we now have the opportunity to assess their effectiveness, identify best practices, and suggest improvements toward future protocol revisions. In this study, we used remote sensing-based datasets to evaluate the carbon trends and harvest histories of 37 IFM projects in California. Despite some current limitations and biases, these datasets can be used to quantify carbon accumulation and harvest rates in offset project lands relative to nearby similar "control" lands before and after the projects began. Five lines of evidence suggest that the carbon accumulated in offset projects to date has generally not been additional to what might have otherwise occurred: (1) most forests in northwestern California have been accumulating carbon since at least the mid-1980s and continue to accumulate carbon, whether enrolled in offset projects or not; (2) harvest rates were high in large timber company project lands before IFM initiation, suggesting they are earning carbon credits for forests in recovery; (3) projects are often located on lands with higher densities of low-timber-value species; (4) carbon accumulation rates have not yet increased on lands that enroll as offset projects, relative to their pre-enrollment levels; and (5) harvest rates have not decreased on most project lands since offset project initiation. These patterns suggest that the current protocol should be improved to robustly measure and reward additionality. In general, our framework of geospatial analyses offers an important and independent means to evaluate the effectiveness of the carbon offsets program, especially as these data products continue improving and as offsets receive attention as a climate mitigation strategy.


Asunto(s)
Carbono , Agricultura Forestal , California , Clima , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Tecnología de Sensores Remotos
6.
Nat Commun ; 13(1): 2717, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581218

RESUMEN

California has experienced a rapid increase in burned area over the past several decades. Although fire behavior is known to be closely tied to ecosystem impacts, most analysis of changing fire regimes has focused solely on area burned. Here we present a standardized database of wildfire behavior, including daily fire rate-of-spread and fire radiative power for large, multiday wildfires in California during 2012-2018 using remotely-sensed active fire observations. We observe that human-ignited fires start at locations with lower tree cover and during periods with more extreme fire weather. These characteristics contribute to more explosive growth in the first few days following ignition for human-caused fires as compared to lightning-caused fires. The faster fire spread, in turn, yields a larger ecosystem impact, with tree mortality more than three times higher for fast-moving fires (>1 km day-1) than for slow moving fires (<0.5 km day-1). Our analysis shows how human-caused fires can amplify ecosystem impacts and highlights the importance of limiting human-caused fires during period of extreme fire weather for meeting forest conservation targets under scenarios of future change.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , Humanos , Árboles
7.
Sci Data ; 9(1): 249, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637186

RESUMEN

Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012-2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models.

8.
Glob Chang Biol ; 28(2): 509-523, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713535

RESUMEN

Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.


Asunto(s)
Escarabajos , Pinus , Animales , Sequías , Pinus ponderosa , Corteza de la Planta , Árboles
9.
Glob Chang Biol ; 28(3): 1119-1132, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34735729

RESUMEN

Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought-related mortality derived from measurements of tree-ring growth (ring width index; RWI) and carbon isotope discrimination (∆13 C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012-2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13 C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13 C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine-dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management-particularly in drier regions-may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.


Asunto(s)
Pinus , Árboles , California , Sequías , Bosques , Pinus ponderosa
10.
Glob Chang Biol ; 28(5): 1823-1852, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779555

RESUMEN

Accurate descriptions of current ecosystem composition are essential for improving terrestrial biosphere model predictions of how ecosystems are responding to climate variability and change. This study investigates how imaging spectrometry-derived ecosystem composition can constrain and improve terrestrial biosphere model predictions of regional-scale carbon, water and energy fluxes. Incorporating imaging spectrometry-derived composition of five plant functional types (Grasses/Shrubs, Oaks/Western Hardwoods, Western Pines, Fir/Cedar and High-elevation Pines) into the Ecosystem Demography (ED2) terrestrial biosphere model improves predictions of net ecosystem productivity (NEP) and gross primary productivity (GPP) across four flux towers of the Southern Sierra Critical Zone Observatory (SSCZO) spanning a 2250 m elevational gradient in the western Sierra Nevada. NEP and GPP root-mean-square-errors were reduced by 23%-82% and 19%-89%, respectively, and water flux predictions improved at the mid-elevation pine (Soaproot), fir/cedar (P301) and high-elevation pine (Shorthair) flux tower sites, but not at the oak savanna (San Joaquin Experimental Range [SJER]) site. These improvements in carbon and water predictions are similar to those achieved with model initializations using ground-based inventory composition. The imaging spectrometry-constrained ED2 model was then used to predict carbon, water and energy fluxes and above-ground biomass (AGB) dynamics over a 737 km2 region to gain insight into the regional ecosystem impacts of the 2012-2015 Californian drought. The analysis indicates that the drought reduced regional NEP, GPP and transpiration by 83%, 40% and 33%, respectively, with the largest reductions occurring in the functionally diverse, high basal area mid-elevation forests. This was accompanied by a 54% decline in AGB growth in 2012, followed by a marked increase (823%) in AGB mortality in 2014, reflecting an approximately 10-fold increase in per capita tree mortality from ~55 trees km-2  year-1 in 2010-2011, to ~535 trees km-2  year-1 in 2014. These findings illustrate how imaging spectrometry estimates of ecosystem composition can constrain and improve terrestrial biosphere model predictions of regional carbon, water, and energy fluxes, and biomass dynamics.


Asunto(s)
Sequías , Ecosistema , Carbono , Ciclo del Carbono , Dióxido de Carbono , Análisis Espectral , Agua
11.
J Environ Manage ; 302(Pt B): 114083, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800763

RESUMEN

An essential component of sustainable forest management is accurate monitoring of forest activities. Although monitoring efforts have generally increased for many forests throughout the world, in practice, effective monitoring is complex. Determining the magnitude and location of progress towards sustainability targets can be challenging due to diverse forest operations across multiple jurisdictions, the lack of data standardization, and discrepancies between field inspections and remotely-sensed records. In this work, we used California as a multijurisdictional case study to explore these problems and develop an approach that broadly informs forest monitoring strategies. The State of California recently entered into a shared stewardship agreement with the US Forest Service (USFS) and set a goal to jointly treat one million acres of forest and rangeland annually by 2025. Currently, however, federal and state forest management datasets are disjoint. This work addresses three barriers stymying the use of federal and state archival records to assess management goals. These barriers are: 1) current databases from different jurisdictions have not been combined due to their distinct data collection processes and internal structures; 2) datasets have not been comprehensively analyzed, despite the need to understand the extent of previous treatments as well as the rate of current activity; and 3) the spatial accuracy of archival datasets has not been evaluated against remotely-sensed data. To reduce these barriers, we first aggregated existing archival forest management records between 1984 and 2019 from the USFS' Forest Activity Tracking System (FACTS) and the California Department of Forestry and Fire Protection (CAL FIRE) using a qualitative scalar of treatment intensity. Combined FACTS and CAL FIRE completed footprint acres - defined as unique areas of land where a treatment was completed at any time since 1984 - have decreased since a peak in 2008. At most, 300,000 footprint acres are completed each year, 30% of the million-acre goal. Prescribed fires - defined as direct burning operations - have risen over time, according to the FACTS hazardous fuels dataset but prescribed fire records in CAL FIRE's dataset have rapidly increased since 2016. We also refined the spatial and temporal detail of the aggregated management record using the Continuous Change Detection and Classification algorithm on satellite remote sensing data to produce a state-wide time series map of harvest disturbances. A comparison of the algorithm's refined data to the archival record potentially suggests over-reporting in both FACTS and CAL FIRE's archival datasets. Our integrated dataset provides a better assessment of current treatments and the path towards the 1-million-acre a year goal. The refined dataset leverages the strengths of complementary, albeit imperfect, monitoring strategies from archives and remotely-sensed detection.


Asunto(s)
Agricultura Forestal , California
12.
Sci Adv ; 7(47): eabe6417, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788093

RESUMEN

Burned area has increased across California, especially in the Sierra Nevada range. Recent fires there have had devasting social, economic, and ecosystem impacts. To understand the consequences of new extremes in fire weather, here we quantify the sensitivity of wildfire occurrence and burned area in the Sierra Nevada to daily meteorological variables during 2001­2020. We find that the likelihood of fire occurrence increases nonlinearly with daily temperature during summer, with a 1°C increase yielding a 19 to 22% increase in risk. Area burned has a similar, nonlinear sensitivity, with 1°C of warming yielding a 22 to 25% increase in risk. Solely considering changes in summer daily temperatures from climate model projections, we estimate that by the 2040s, fire number will increase by 51 ± 32%, and burned area will increase by 59 ± 33%. These trends highlight the threat posed to fire management by hotter and drier summers.

13.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33026137

RESUMEN

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Asunto(s)
Gases de Efecto Invernadero , Atmósfera , Dióxido de Carbono/análisis , Ecosistema , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Reproducibilidad de los Resultados , Respiración , Suelo
14.
Sci Rep ; 8(1): 17973, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568298

RESUMEN

Growing season length (GSL) is a key unifying concept in ecology that can be estimated from eddy covariance-derived estimates of net ecosystem production (NEP). Previous studies disagree on how increasing GSLs may affect NEP in evergreen coniferous forests, potentially due to the variety of methods used to quantify GSL from NEP. We calculated GSL and GSL-NEP regressions at eleven evergreen conifer sites across a broad climatic gradient in western North America using three common approaches: (1) variable length (3-7 days) regressions of day of year versus NEP, (2) a smoothed threshold approach, and (3) the carbon uptake period, followed by a new approach of a method-averaged ensemble. The GSL and the GSL-NEP relationship differed among methods, resulting in linear relationships with variable sign, slope, and statistical significance. For all combinations of sites and methods, the GSL explained between 6% and 82% of NEP with p-values ranging from 0.45 to < 0.01. These results demonstrate the variability among GSL methods and the importance of selecting an appropriate method to accurately project the ecosystem carbon cycling response to longer growing seasons in the future. To encourage this approach in future studies, we outline a series of best practices for GSL method selection depending on research goals and the annual NEP dynamics of the study site(s). These results contribute to understanding growing season dynamics at ecosystem and continental scales and underscore the potential for methodological variability to influence forecasts of the evergreen conifer forest response to climate variability.


Asunto(s)
Ecosistema , Bosques , Estaciones del Año , Tracheophyta , Árboles , Modelos Teóricos
15.
Pancreatology ; 18(7): 774-784, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30119992

RESUMEN

BACKGROUND: Longitudinal data are lacking to support consensus criteria for diagnosing early chronic pancreatitis. METHODS: Retrospective single centre study of the initial evidence for chronic pancreatitis (CP), with reassessment after follow-up (January 2003-November 2016). RESULTS: 807 patients were previously diagnosed with chronic pancreatitis. This diagnosis was rejected in 118 patients: 52 had another pathology altogether, the remaining 66 patients formed the study population. 38 patients with 'normal' imaging were reclassified as chronic abdominal pain syndrome (CAPS), and 28 patients had minimal change features of CP on EUS (MCEUS) but never progressed. Strict application of the Japanese diagnostic criteria would diagnose only two patients with early CP and eleven as possible CP. Patients were more likely to have MCEUS if the EUS was performed within 12 months of an attack of acute pancreatitis. 40 patients with MCEUS were identified, including an additional 12 who progressed to definite CP after a median of 30 (18.75-36.5) months. Those continuing to consume excess alcohol and/or continued smoking were significantly more likely to progress. Those who progressed were more likely to develop pancreatic exocrine insufficiency, require pancreatic surgery and had higher mortality. CONCLUSION: There needs to be more stringent application of the systems used for diagnosing chronic pancreatitis with revision of the current terminology 'indeterminate', 'suggestive', 'possible', and 'early' chronic pancreatitis. All patients with MCEUS features of CP require ongoing clinical follow up of at least 30 months and all patients with these features should be strongly counselled regarding smoking cessation and abstinence from alcohol.


Asunto(s)
Pancreatitis Crónica/diagnóstico por imagen , Pancreatitis Crónica/diagnóstico , Adulto , Endosonografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Páncreas/patología , Factores de Riesgo , Índice de Severidad de la Enfermedad
16.
Oecologia ; 187(4): 995-1007, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29955989

RESUMEN

There are few whole-canopy or ecosystem scale assessments of the interplay between canopy temperature and photosynthesis across both spatial and temporal scales. The stable oxygen isotope ratio (δ18O) of plant cellulose can be used to resolve a photosynthesis-weighted estimate of canopy temperature, but the method requires independent confirmation. We compare isotope-resolved canopy temperatures derived from multi-year homogenization of tree cellulose δ18O to canopy-air temperatures weighted by gross primary productivity (GPP) at multiple sites, ranging from warm temperate to boreal and subalpine forests. We also perform a sensitivity analysis for isotope-resolved canopy temperatures that showed errors in plant source water δ18O lead to the largest errors in canopy temperature estimation. The relationship between isotope-resolved canopy temperatures and GPP-weighted air temperatures was highly significant across sites (p < 0.0001, R2 = 0.82), thus offering confirmation of the isotope approach. The previously observed temperature invariance from temperate to boreal biomes was confirmed, but the greater elevation of canopy temperature above air temperature in the boreal forest was not. Based on the current analysis, we conclude that canopy temperatures in the boreal forest are as warm as those in temperate systems because day-time-growing-season air temperatures are similarly warm.


Asunto(s)
Ecosistema , Fotosíntesis , Celulosa , Hojas de la Planta , Temperatura , Árboles
17.
Ecol Appl ; 28(5): 1313-1324, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29694698

RESUMEN

A central challenge to understanding how climate anomalies, such as drought and heatwaves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and temporal variation in ecosystem gross primary productivity (GPP). Existing empirical and model-based satellite broadband spectra-based products have been shown to miss critical variation in GPP. Here, we evaluate the potential of high spectral resolution (10 nm) shortwave (400-2,500 nm) imagery to better detect spatial and temporal variations in GPP across a range of ecosystems, including forests, grassland-savannas, wetlands, and shrublands in a water-stressed region. Estimates of GPP from eddy covariance observations were compared against airborne hyperspectral imagery, collected across California during the 2013-2014 HyspIRI airborne preparatory campaign. Observations from 19 flux towers across 23 flight campaigns (102 total image-flux tower pairs) showed GPP to be strongly correlated to a suite of spectral wavelengths and band ratios associated with foliar physiology and chemistry. A partial least squares regression (PLSR) modeling approach was then used to predict GPP with higher validation accuracy (adjusted R2  = 0.71) and low bias (0.04) compared to existing broadband approaches (e.g., adjusted R2  = 0.68 and bias = -5.71 with the Sims et al. model). Significant wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco (wavelengths 1,680, 1,740, and 2,290 nm) and Vcmax (wavelengths 1,680, 1,722, 1,732, 1,760, and 2,300 nm). These results provide strong evidence that advances in satellite spectral resolution offer significant promise for improved satellite-based monitoring of GPP variability across a diverse range of terrestrial ecosystems.


Asunto(s)
Sequías , Ecosistema , Tecnología de Sensores Remotos/métodos , Análisis Espectral/métodos , California , Bosques , Pradera , Humedales
18.
Glob Chang Biol ; 24(8): 3472-3485, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29654607

RESUMEN

Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world-wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe-controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system-scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO2 (or reduce annual CO2 release to the atmosphere). Moreover, engagement of CLM4.5's ground-truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems.


Asunto(s)
Ciclo del Carbono , Ecosistema , Incendios/prevención & control , Microbiología del Suelo , Agua/metabolismo , Arizona , Brasil , California , Modelos Teóricos , Washingtón
19.
Sci Rep ; 8(1): 690, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330378

RESUMEN

Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.

20.
Sci Total Environ ; 599-600: 1583-1597, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28531966

RESUMEN

Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for >60years because of technical measurement constraints. Here we evaluated 62site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions. We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes. Typical weather events such as temperature anomalies or drying-wetting cycles severely affected forest functions. Particularly, a summer drought in the boreal forest resulted in an increased NEP owing to a considerable decrease in Re, but at the cost of greater water loss from deeper groundwater resources. These findings will provide important implications for forest management strategies to mitigate global climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...