Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Genet ; 25(5): 340-361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38001317

RESUMEN

Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.

2.
bioRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961702

RESUMEN

Protein kinases are disease drivers whose therapeutic targeting traditionally centers on inhibition of enzymatic activity. Here chemically induced proximity is leveraged to convert kinase inhibitors into context-specific activators of therapeutic genes. Bivalent molecules that link ligands of the transcription factor B-cell lymphoma 6 (BCL6) to ATP-competitive inhibitors of cyclin-dependent kinases (CDKs) were developed to re-localize CDK to BCL6-bound loci on chromatin and direct phosphorylation of RNA Pol II. The resulting BCL6-target proapoptotic gene expression translated into killing of diffuse large B-cell lymphoma (DLBCL) cells at 72 h with EC50s of 0.9 - 10 nM and highly specific ablation of the BCL6-regulated germinal center response in mice. The molecules exhibited 10,000-fold lower cytotoxicity in normal lymphocytes and are well tolerated in mice. Genomic and proteomic evidence corroborated a gain-of-function mechanism where, instead of global enzyme inhibition, a fraction of total kinase activity is borrowed and re-localized to BCL6-bound loci. The strategy demonstrates how kinase inhibitors can be used to context-specifically activate transcription, accessing new therapeutic space.

4.
Nature ; 620(7973): 417-425, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495688

RESUMEN

Genes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1-4. Independent studies have identified cell death pathways that eliminate cells for the good of the organism5,6. The coexistence of cell death pathways with driver mutations suggests that the cancer driver could be rewired to activate cell death using chemical inducers of proximity (CIPs). Here we describe a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes, thereby activating their expression. We focused on diffuse large B cell lymphoma, in which the transcription factor B cell lymphoma 6 (BCL6) is deregulated7. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression8. We produced TCIPs by covalently linking small molecules that bind BCL6 to those that bind to transcriptional activators that contribute to the oncogenic program, such as BRD4. The most potent molecule, TCIP1, increases binding of BRD4 by 50% over genomic BCL6-binding sites to produce transcriptional elongation at pro-apoptotic target genes within 15 min, while reducing binding of BRD4 over enhancers by only 10%, reflecting a gain-of-function mechanism. TCIP1 kills diffuse large B cell lymphoma cell lines, including chemotherapy-resistant, TP53-mutant lines, at EC50 of 1-10 nM in 72 h and exhibits cell-specific and tissue-specific effects, capturing the combinatorial specificity inherent to transcription. The TCIP concept also has therapeutic applications in regulating the expression of genes for regenerative medicine and developmental disorders.


Asunto(s)
Apoptosis , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Factores de Transcripción , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo , Epigénesis Genética/efectos de los fármacos , Regiones Promotoras Genéticas , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética
5.
ACS Chem Biol ; 15(6): 1685-1696, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32369697

RESUMEN

SWI/SNF (BAF) complexes are a diverse family of ATP-dependent chromatin remodelers produced by combinatorial assembly that are mutated in and thought to contribute to 20% of human cancers and a large number of neurologic diseases. The gene-activating functions of BAF complexes are essential for viability of many cell types, limiting the development of small molecule inhibitors. To circumvent the potential toxicity of SWI/SNF inhibition, we identified small molecules that inhibit the specific repressive function of these complexes but are relatively nontoxic and importantly synergize with ATR inhibitors in killing cancer cells. Our studies suggest an avenue for therapeutic enhancement of ATR/ATM inhibition and provide evidence for chemical synthetic lethality of BAF complexes as a therapeutic strategy in cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Neoplasias/patología , Factores de Transcripción/metabolismo , Ciclo Celular/efectos de los fármacos , Células HCT116 , Humanos , Inhibidores de Proteínas Quinasas/farmacología
6.
Langmuir ; 32(4): 1127-38, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26735290

RESUMEN

The self-assembly of citrate-capped Au nanoparticles (5 nm) resulted in branched nanochains by adding CaCl2 versus spherical nanoclusters for NaCl. These assemblies were formed between 1 s to 30 min by tuning the electrostatic repulsion and the interparticle bridging attraction between the cations and citrate ligands as a function of electrolyte concentration. For dilute Ca(2+), strong interparticle bridging favored particle attachment at chain ends. This resulted in the formation of small, branched chains with lengths as short as 20 nm, due to the large Debye length for the diffuse counterions. Furthermore, the bridging produced very small interparticle spacings and sintering, as evident in high-resolution TEM despite the low temperature. This morphology produced a large red shift in the surface plasmon resonance, as characterized by a broad extinction peak with NIR absorption out to 1000 nm, which is unusual for such small particles. Whereas these properties were seen for primary particles with partial citrate monolayers, the degrees of sintering and NIR extinction were small in the case of citrate multilayers. The ability to design the size and shape of nanoparticle clusters as well as the interparticle spacing by tuning bridging and electrostatic interactions may be expected to be quite general and of broad applicability in materials synthesis.


Asunto(s)
Cloruro de Calcio/química , Oro/química , Nanopartículas del Metal/química , Nanosferas/química , Citratos/química , Coloides , Luz , Tamaño de la Partícula , Dispersión de Radiación , Cloruro de Sodio/química , Citrato de Sodio
7.
J Phys Chem C Nanomater Interfaces ; 118(26): 14291-14298, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25061496

RESUMEN

Gold nanospheres coated with a binary monolayer of bound citrate and cysteine ligands were assembled into nanoclusters, in which the size and near-infrared (NIR) extinction were tuned by varying the pH and concentration of added NaCl. During full evaporation of an aqueous dispersion of 4.5 ± 1.8 nm Au primary particles, the nanoclusters were formed and quenched by the triblock copolymer polylactic acid (PLA)(1K)-b-poly(ethylene glycol) (PEG)(10K)-b-PLA(1K), which also provided steric stabilization. The short-ranged depletion and van der Waals attractive forces were balanced against longer ranged electrostatic repulsion to tune the nanocluster diameter and NIR extinction. Upon lowering the pH from 7 to 5 at a given salinity, the magnitude of the charge on the primary particles decreased, such that the weaker electrostatic repulsion increased the hydrodynamic diameter and, consequently, NIR extinction of the clusters. At a given pH, as the concentration of NaCl was increased, the NIR extinction decreased monotonically. Furthermore, the greater screening of the charges on the nanoclusters weakened the interactions with PLA(1K)-b-PEG(10K)-b-PLA(1K) and thus lowered the amount of adsorbed polymer on the nanocluster surface. The generalization of the concept of self-assembly of small NIR-active nanoclusters to include a strongly bound thiol and the manipulation of the morphologies and NIR extinction by variation of pH and salinity not only is of fundamental interest but also is important for optical biomedical imaging and therapy.

8.
J Am Chem Soc ; 135(21): 7799-802, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23565806

RESUMEN

The adsorption of even a single serum protein molecule on a gold nanosphere used in biomedical imaging may increase the size too much for renal clearance. In this work, we designed charged ~5 nm Au nanospheres coated with binary mixed-charge ligand monolayers that do not change in size upon incubation in pure fetal bovine serum (FBS). This lack of protein adsorption was unexpected in view of the fact that the Au surface was moderately charged. The mixed-charge monolayers were composed of anionic citrate ligands modified by place exchange with naturally occurring amino acids: either cationic lysine or zwitterionic cysteine ligands. The zwitterionic tips of either the lysine or cysteine ligands interact weakly with the proteins and furthermore increase the distance between the "buried" charges closer to the Au surface and the interacting sites on the protein surface. The ~5 nm nanospheres were assembled into ~20 nm diameter nanoclusters with strong near-IR absorbance (of interest in biomedical imaging and therapy) with a biodegradable polymer, PLA(1k)-b-PEG(10k)-b-PLA(1k). Upon biodegradation of the polymer in acidic solution, the nanoclusters dissociated into primary ~5 nm Au nanospheres, which also did not adsorb any detectable serum protein in undiluted FBS.


Asunto(s)
Proteínas Sanguíneas/química , Oro/química , Nanopartículas del Metal/química , Suero , Adsorción , Animales , Bovinos , Espectroscopía Infrarroja Corta
9.
ACS Nano ; 7(1): 239-51, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23230905

RESUMEN

Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors, and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semiquantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging.


Asunto(s)
Implantes Absorbibles , Cristalización/métodos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Polímeros/química , Ensayo de Materiales , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...