Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 2): 127-133, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830736

RESUMEN

A new (N2H4)WO3 compound has been obtained by mixing WO3 and aqueous hydrazine solution at room temperature for 24 h. The reaction is catalyzed by the presence of lithium. X-ray, synchrotron and neutron diffraction techniques have shown that the material crystallizes in trigonal space group P3221 (No. 154). Chains of distorted WO4 tetrahedra extend along the a axis of the unit cell, linked by a corner-sharing oxygen atom: the N2H4 are in the voids between them. The thermal characterization shows that this new compound is stable up to 220°C, greatly beyond the boiling point of N2H4 (114°C); thus making it a promising candidate for catalysis or trapping applications.

2.
Nature ; 404(6780): 856-8, 2000 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-10786788

RESUMEN

The ability of solid oxides to conduct oxide ions has been known for more than a century, and fast oxide-ion conductors (or oxide electrolytes) are now being used for applications ranging from oxide fuel cells to oxygen pumping devices. To be technologically viable, these oxide electrolytes must exhibit high oxide-ion mobility at low operating temperatures. Because of the size and interaction of oxygen ions with the cationic network, high mobility can only be achieved with classes of materials with suitable structural features. So far, high mobility has been observed in only a small number of structural families, such as fluorite, perovskites, intergrowth perovskite/Bi2O2 layers and pyrochlores. Here we report a family of solid oxides based on the parent compound La2Mo2O9 (with a different crystal structure from all known oxide electrolytes) which exhibits fast oxide-ion conducting properties. Like other ionic conductors, this material undergoes a structural transition around 580 degrees C resulting in an increase of conduction by almost two orders of magnitude. Its conductivity is about 6 x 10(-2) S cm(-1) at 800 degrees C, which is comparable to that of stabilized zirconia, the most widely used oxide electrolyte. The structural similarity of La2Mo2O9 with beta-SnWO4 (ref. 14) suggests a structural model for the origin of the oxide-ion conduction. More generally, substitution of a cation that has a lone pair of electrons by a different cation that does not have a lone pair--and which has a higher oxidation state--could be used as an original way to design other oxide-ion conductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...