Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diseases ; 12(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785745

RESUMEN

Calcium channels are specialized ion channels exhibiting selective permeability to calcium ions. Calcium channels, comprising voltage-dependent and ligand-gated types, are pivotal in neuronal function, with their dysregulation is implicated in various neurological disorders. This review delves into the significance of the CACNA genes, including CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1G, and CACNA1H, in the pathogenesis of conditions such as migraine, epilepsy, cerebellar ataxia, dystonia, and cerebellar atrophy. Specifically, variants in CACNA1A have been linked to familial hemiplegic migraine and epileptic seizures, underscoring its importance in neurological disease etiology. Furthermore, different genetic variants of CACNA1B have been associated with migraine susceptibility, further highlighting the role of CACNA genes in migraine pathology. The complex relationship between CACNA gene variants and neurological phenotypes, including focal seizures and ataxia, presents a variety of clinical manifestations of impaired calcium channel function. The aim of this article was to explore the role of CACNA genes in various neurological disorders, elucidating their significance in conditions such as migraine, epilepsy, and cerebellar ataxias. Further exploration of CACNA gene variants and their interactions with molecular factors, such as microRNAs, holds promise for advancing our understanding of genetic neurological disorders.

3.
Epigenomics ; 16(7): 473-491, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511224

RESUMEN

Neurological diseases are multifactorial, genetic and environmental. Environmental factors such as diet, physical activity and emotional state are epigenetic factors. Environmental markers are responsible for epigenetic modifications. The effect of epigenetic changes is increased inflammation of the nervous system and neuronal damage. In recent years, it has been shown that epigenetic changes may cause an increased risk of neurological disorders but, currently, the relationship between epigenetic modifications and neurodegeneration remains unclear. This review summarizes current knowledge about neurological disorders caused by epigenetic changes in diseases such as Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Advances in epigenetic techniques may be key to understanding the epigenetics of central changes in neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/genética , Epigénesis Genética , Enfermedad de Alzheimer/genética , Enfermedad de Parkinson/genética , Dieta , Metilación de ADN
4.
Neurol Int ; 15(4): 1238-1252, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873835

RESUMEN

Autosomal dominant cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular disease characterized by recurrent strokes, cognitive impairment, psychiatric symptoms, apathy, and migraine. Approximately 40% of patients with CADASIL experience migraine with aura (MA). In addition to MA, CADASIL patients are described in the literature as having migraine without aura (MO) and other types of headaches. Mutations in the NOTCH3 gene cause CADASIL. This study investigated NOTCH3 genetic variants in CADASIL patients and their potential association with headache types. Genetic tests were performed on 30 patients with CADASIL (20 women aged 43.6 ± 11.5 and 10 men aged 39.6 ± 15.8). PCR-HRM and sequencing methods were used in the genetic study. We described three variants as pathogenic/likely pathogenic (p.Tyr189Cys, p.Arg153Cys, p.Cys144Arg) and two benign variants (p.Ala202=, p.Thr101=) in the NOTCH3 gene and also presented the NOTCH3 gene variant (chr19:15192258 G>T), which has not been previously described in the literature. Patients with pathogenic/likely pathogenic variants had similar headache courses. People with benign variants showed a more diverse clinical picture. It seems that different NOTCH3 variants may contribute to the differential presentation of a CADASIL headache, highlighting the diagnostic and prognostic value of headache characteristics in this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA