Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Cell Biol ; 24(1): 4-13, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22321829

RESUMEN

Centrioles are very small microtubule-based organelles essential for centrosome, cilia and flagella assembly, which are involved in a variety of cellular and developmental processes. Although the centriole was first described almost a century ago, the knowledge on its assembly mechanism remains poor. In the past decade, forefront functional studies have provided important data on the different players involved in centriole biogenesis. Centriole research has now started to profit from highly sensitive structural, imaging, and biochemical techniques that are unveiling how those players contribute to assemble such a small and complex structure. We will review those studies and discuss how this field will increasingly benefit from the newborn and exciting era of super resolution analyses.


Asunto(s)
Centriolos/química , Centriolos/metabolismo , Animales , Centrosoma/metabolismo , Cilios/metabolismo , Humanos , Microtúbulos/metabolismo
2.
J Neurosci ; 31(22): 8194-209, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632941

RESUMEN

Dynamic microtubules are important to maintain neuronal morphology and function, but whether neuronal activity affects the organization of dynamic microtubules is unknown. Here, we show that a protocol to induce NMDA-dependent long-term depression (LTD) rapidly attenuates microtubule dynamics in primary rat hippocampal neurons, removing the microtubule-binding protein EB3 from the growing microtubule plus-ends in dendrites. This effect requires the entry of calcium and is mediated by activation of NR2B-containing NMDA-type glutamate receptor. The rapid NMDA effect is followed by a second, more prolonged response, during which EB3 accumulates along MAP2-positive microtubule bundles in the dendritic shaft. MAP2 is both required and sufficient for this activity-dependent redistribution of EB3. Importantly, NMDA receptor activation suppresses microtubule entry in dendritic spines, whereas overexpression of EB3-GFP prevents NMDA-induced spine shrinkage. These results suggest that short-lasting and long-lasting changes in dendritic microtubule dynamics are important determinants for NMDA-induced LTD.


Asunto(s)
Espinas Dendríticas/metabolismo , Hipocampo/fisiología , Microtúbulos/fisiología , Neuronas/citología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Calcio/metabolismo , Técnicas de Cultivo de Célula , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Receptores de N-Metil-D-Aspartato/agonistas
3.
J Cell Biol ; 193(6): 1083-99, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21646404

RESUMEN

The ends of growing microtubules (MTs) accumulate a set of diverse factors known as MT plus end-tracking proteins (+TIPs), which control microtubule dynamics and organization. In this paper, we identify SLAIN2 as a key component of +TIP interaction networks. We showed that the C-terminal part of SLAIN2 bound to end-binding proteins (EBs), cytoplasmic linker proteins (CLIPs), and CLIP-associated proteins and characterized in detail the interaction of SLAIN2 with EB1 and CLIP-170. Furthermore, we found that the N-terminal part of SLAIN2 interacted with ch-TOG, the mammalian homologue of the MT polymerase XMAP215. Through its multiple interactions, SLAIN2 enhanced ch-TOG accumulation at MT plus ends and, as a consequence, strongly stimulated processive MT polymerization in interphase cells. Depletion or disruption of the SLAIN2-ch-TOG complex led to disorganization of the radial MT array. During mitosis, SLAIN2 became highly phosphorylated, and its interaction with EBs and ch-TOG was inhibited. Our study provides new insights into the molecular mechanisms underlying cell cycle-specific regulation of MT polymerization and the organization of the MT network.


Asunto(s)
Interfase/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformación Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
4.
Int Rev Cell Mol Biol ; 285: 1-74, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21035097

RESUMEN

The microtubule plus end is a crucial site for the regulation of microtubule dynamics and microtubule association with different cellular organelles and macromolecular complexes. Several evolutionarily conserved groups of proteins form comet-like accumulations at the growing microtubule plus ends. These proteins belong to functionally diverse and structurally unrelated families: they include motors, nonmotor proteins, microtubule polymerases, and depolymerases as well as regulatory and adaptor proteins. Here, we provide an overview of microtubule plus end binding proteins, describe what is known about the mechanisms of their association with growing microtubule tips, and discuss their functional properties in relation to microtubule plus end accumulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Biología Celular , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Biología Molecular/métodos , Animales , Proteínas Portadoras/análisis , Rastreo Celular/métodos , Humanos , Proteínas de Microtúbulos/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Modelos Biológicos , Unión Proteica , Multimerización de Proteína/fisiología
5.
Cell ; 138(2): 366-76, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632184

RESUMEN

Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +TIPs to microtubule ends, but the underlying molecular mechanism remains elusive. By using live cell experiments and in vitro reconstitution assays, we demonstrate that a short polypeptide motif, Ser-x-Ile-Pro (SxIP), is used by numerous +TIPs, including the tumor suppressor APC, the transmembrane protein STIM1, and the kinesin MCAK, for localization to microtubule tips in an EB1-dependent manner. Structural and biochemical data reveal the molecular basis of the EB1-SxIP interaction and explain its negative regulation by phosphorylation. Our findings establish a general "microtubule tip localization signal" (MtLS) and delineate a unifying mechanism for this subcellular protein targeting process.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Señales de Clasificación de Proteína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Alineación de Secuencia
6.
J Cell Biol ; 184(5): 691-706, 2009 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-19255245

RESUMEN

End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Células CHO , Diferenciación Celular/fisiología , Cricetinae , Cricetulus , Dimerización , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Multimerización de Proteína , Estructura Terciaria de Proteína
7.
Neuron ; 61(1): 85-100, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19146815

RESUMEN

Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.


Asunto(s)
Espinas Dendríticas/ultraestructura , Microtúbulos/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Cortactina/metabolismo , Citoesqueleto/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nocodazol/farmacología , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/ultraestructura , Moduladores de Tubulina/farmacología
8.
Curr Biol ; 18(3): 177-82, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18249114

RESUMEN

Stromal interaction molecule 1 (STIM1) is a transmembrane protein that is essential for store-operated Ca(2+) entry, a process of extracellular Ca(2+) influx in response to the depletion of Ca(2+) stores in the endoplasmic reticulum (ER) (reviewed in [1-4]). STIM1 localizes predominantly to the ER; upon Ca(2+) release from the ER, STIM1 translocates to the ER-plasma membrane junctions and activates Ca(2+) channels (reviewed in [1-4]). Here, we show that STIM1 directly binds to the microtubule-plus-end-tracking protein EB1 and forms EB1-dependent comet-like accumulations at the sites where polymerizing microtubule ends come in contact with the ER network. Therefore, the previously observed tubulovesicular motility of GFP-STIM1 [5] is not a motor-based movement but a traveling wave of diffusion-dependent STIM1 concentration in the ER membrane. STIM1 overexpression strongly stimulates ER extension occurring through the microtubule "tip attachment complex" (TAC) mechanism [6, 7], a process whereby an ER tubule attaches to and elongates together with the EB1-positive end of a growing microtubule. Depletion of STIM1 and EB1 decreases TAC-dependent ER protrusion, indicating that microtubule growth-dependent concentration of STIM1 in the ER membrane plays a role in ER remodeling.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...