Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978790

RESUMEN

Prenatal alcohol exposure (PAE) impairs fetal development. Alcohol consumption was shown to modulate the renin-angiotensin system (RAS). This study aimed to analyze the effects of PAE on the expression of the renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) peptide systems in the hippocampus and heart of mice of both sexes. C57Bl/6 mice were exposed to alcohol during pregnancy at a concentration of 10% (v/v). On postnatal day 45 (PN45), mouse hippocampi and left ventricles (LV) were collected and processed for messenger RNA (mRNA) expression of components of the RAS and KKS. In PAE animals, more pronounced expression of AT1 and ACE mRNAs in males and a restored AT2 mRNA expression in females were observed in both tissues. In LV, increased AT2, ACE2, and B2 mRNA expressions were also observed in PAE females. Furthermore, high levels of H2O2 were observed in males from the PAE group in both tissues. Taken together, our results suggest that modulation of the expression of these peptidergic systems in PAE females may make them less susceptible to the effects of alcohol.

2.
Oxid Med Cell Longev ; 2018: 6736721, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30159115

RESUMEN

Neuroprotection is a desirable process in many neurological disorders, yet complex mechanisms involved in this field are not completely understood. The pilocarpine epilepsy model causes potent, seizure-induced excitotoxicity cell death and mitochondria impairment. The present study is aimed at investigating the role of UCP2, a ROS negative regulator, in the neuroprotection after cholinergic insult. Our data demonstrated that UCP2 expression was augmented in the rat hippocampus 3 days after status epilepticus (SE), reaching a peak on the fifth day, then returning to basal levels. Concomitantly, phospho-AKT expression levels were higher in the hippocampus during the early silent phase (5 days after SE). Additionally, it was demonstrated that the blockade of UCP2 by antisense oligonucleotides (ASO) in SE rats successfully diminished both UCP2 mRNA and protein contents. SE ASO rats presented increased mitochondrial proapoptotic factor expression, caspase-3 activity, inflammatory cytokine expression, and ROS formation. Moreover, ASO treatment diminished p-AKT expression and antioxidant enzyme activities after pilocarpine insult. In conclusion, the present results highlight the neuroprotective actions of UCP2, acting in the inhibition of apoptotic factors and oxidative stress, to increase neuron survival after SE onset.


Asunto(s)
Estrés Oxidativo/fisiología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Proteína Desacopladora 2/metabolismo , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Masculino , Estrés Oxidativo/efectos de los fármacos , Pilocarpina , Ratas , Ratas Wistar , Estado Epiléptico/patología
3.
Epilepsy Behav ; 51: 300-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26318793

RESUMEN

During the epileptogenic process, several events may occur, such as an important activation of the immune system in the central nervous system. The response to seizure activity results in an inflammation in the brain as well as in the periphery. Moreover, CRP and cytokines may be able to interact with numerous ligands in response to cardiac injury caused by sympathetic stimulation in ictal and postictal states. Based on this, we measured the serum levels of C-reactive protein (CRP) and cytokines during acute, silent, and chronic phases of rats submitted to the pilocarpine model of epilepsy. We have also analyzed the effect of a chronic treatment of these rats with omega-3 fatty acid in CRP and cytokine levels, during an epileptic focus generation. C-reactive protein and cytokines such as IL-1ß, IL-6, and TNF-α presented high concentration in the blood of rats, even well after the occurrence of SE. We found reduced levels of CRP and all proinflammatory cytokines in the blood of animals with chronic seizures, treated with omega-3, when compared with those treated with vehicle solution. Taken together, our results strongly suggest that the omega-3 is an effective treatment to prevent SUDEP occurrence due to its capability to act as an anti-inflammatory compound, reducing the systemic inflammatory parameters altered by seizures.


Asunto(s)
Biomarcadores/sangre , Epilepsia/sangre , Epilepsia/prevención & control , Ácidos Grasos Omega-3/uso terapéutico , Inflamación/sangre , Animales , Conducta Animal , Proteína C-Reactiva/metabolismo , Convulsivantes , Citocinas/sangre , Epilepsia/inducido químicamente , Masculino , Pilocarpina , Ratas , Ratas Wistar , Estado Epiléptico/sangre , Estado Epiléptico/inducido químicamente
4.
World J Biol Chem ; 5(2): 130-40, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-24921004

RESUMEN

The kallikrein-kinin system (KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors (B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system (RAS) is an important blood pressure regulator and controls both sodium and water intake. AngII is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngII acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.

5.
World J Biol Chem ; 4(4): 141-7, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24340137

RESUMEN

AIM: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats. METHODS: The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography (HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion (gavage). Animals were killed 40 min after drug ingestion and the structures stored at -80 °C until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P < 0.05 was accepted as significant. RESULTS: The results showed decreased concentrations of glycine (GLY) (0.13 ± 0.03 vs 0.29 ± 0.07, P < 0.001) and γ-aminobutyric acid (GABA) (1.07 ± 0.14 vs 1.73 ± 0.25, P < 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level (0.11 ± 0.01 vs 0.29 ± 0.07, P < 0.001) and GABA (0.98 ± 0.06 vs 1.73 ± 0.25, P < 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg (1.29 ± 0.19 vs 0.84 ± 0.21, P < 0.05); 500 mg/kg (2.23 ± 038 vs 084 ± 0.21, P < 0.05) and 800 mg/kg (1.98 ± 0.92 vs 0.84 ± 0.21, P < 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg (noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P < 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P < 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P < 0.001), 500 mg/kg (noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P < 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P < 0.001) and 800 mg/kg (noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.84 ± 0.65 vs 2.39 ± 0.84, P < 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P < 0.001). CONCLUSION: Our data suggest increased release of inhibitory amino acids by the hippocampus and an increased utilization rate of monoamines by the amygdala after different doses of ayahuasca ingestion.

6.
Neurochem Int ; 61(1): 54-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22542773

RESUMEN

We previously showed that patients with temporal lobe epilepsy (TLE) present an increased expression of angiotensin II (AngII) AT1 and AT2 receptors in the hippocampus, supporting the idea of an upregulation of renin-angiotensin system (RAS) in this disease. This study aimed to verify the relationship between the RAS and TLE during epileptogenesis. Levels of the peptides angiotensin I (AngI), angiotensin II (AngII) and angiotensin 1-7 (Ang 1-7), were detected by HPLC assay. Angiotensin AT1 and AT2 receptors, Mas mRNA receptors and angiotensin converting enzyme (ACE), tonin and neutral endopeptidase (NEP) mRNA were also quantified at the hippocampus of Wistar rats by real time PCR, during acute (n=10), silent (n=10) and chronic (n=10) phases of pilocarpine-induced epilepsy. We observed an increased peptide level of Ang1-7 into acute and silent phases, decreasing importantly (p≤0.05) in the chronic phase, suggesting that AngI may be converted into Ang 1-7 by NEP, which is present in high levels in these periods. Our results also showed increased peptide level of AngII in the chronic phase of this model. In contraposition, the ACE expression is reduced in all periods. These data suggest that angiotensinogen or AngI may be cleaved to AngII by tonin, which showed increased expression in all phases. We found changes in AT1, AT2 and Mas mRNA receptors levels suggesting that Ang1-7 could act at Mas receptor during the silent period. Herein, we demonstrated for the first time, changes in angiotensin-related peptides, their receptors as well as the releasing enzymes in the hippocampus of rats during pilocarpine-induced epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/efectos de los fármacos , Pilocarpina/toxicidad , Sistema Renina-Angiotensina , Animales , Secuencia de Bases , Cartilla de ADN , Epilepsia del Lóbulo Temporal/inducido químicamente , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Epilepsy Behav ; 20(1): 1-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21130693

RESUMEN

Statins may act on inflammatory responses, decreasing oxidative stress and also reducing temperature after a brain ischemic insult. Previous data have indicated that statins protect neurons from death during long-lasting status epilepticus (SE) and attenuate seizure behaviors in animals treated with kainic acid. In this context, the study described here aimed to investigate the effect of lovastatin on body temperature and on mRNA expression levels of hippocampal cytokines such as interleukin-1ß, interleukin-6, tumor necrosis factor α, and kinin B1 and B2 receptors of rats submitted to pilocarpine-induced SE. Quantitative real-time polymerase chain reaction showed a significant decrease in mRNA expression of interleukin-1ß, interleukin-6, tumor necrosis factor α, and kinin B1 receptor in animals with SE treated with lovastatin, compared with untreated animals with SE (P<0.001). Lovastatin also reduced SE-induced hyperthermia, indicating that mechanisms related to brain protection are triggered by this drug under conditions associated with acute excitotoxicity or long-lasting SE.


Asunto(s)
Citocinas/metabolismo , Fiebre/metabolismo , Hipocampo/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Mediadores de Inflamación/metabolismo , Lovastatina/uso terapéutico , Estado Epiléptico/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal/efectos de los fármacos , Citocinas/genética , Fiebre/genética , Fiebre/fisiopatología , Hipocampo/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lovastatina/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pilocarpina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estado Epiléptico/inducido químicamente , Estado Epiléptico/genética , Estado Epiléptico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA