Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 181: 92-103, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29656019

RESUMEN

The molecular mechanisms that distinguish immunosenescence from general age-related decline are poorly understood. We addressed this by exposing Day 1 and Day 5 adults of Caenorhabditis elegans to Pseudomonas aeruginosa strain PA01, an opportunistic pathogen. Day 5 adult C. elegans exhibited greater vulnerability to infection as compared to Day 1 C. elegans. Using TMT6-plex isobaric labeling and reductive dimethylation, we identified 55 proteins whose levels were altered following infection of Day 1 and Day 5 adults. Proteins whose levels changed in response to infection at both ages were strongly enriched for locomotory functions underscoring the importance of pathogen avoidance mechanisms. In Day 1 C. elegans, proteins with reproductive functions were highly enriched, whereas, Day 5 worms showed elevated levels of factors representing stress response pathways such as unfolded protein response (UPR) and metabolic functions. We also found that PA01 infection is associated with elevated protein carbonylation, an irreversible marker for oxidative stress. We explored the function of UNC-60, a cytoskeletal protein whose levels were changed by both age and infection, and found that mutants of unc-60 have reduced lifespan. Overall, our data provide novel insights into the relationship between age and immunosenescence in metazoans. SIGNIFICANCE: There are gaps in our knowledge pertaining to how aging influences an organism's response to pathogen exposure. In C. elegans, pathogen exposure to P. aeruginosa PA01 results in shortened lifespan, which is more pronounced in Day 5, compared to Day 1 adult worms. The proteome has age-specific responses to this exposure, and notably affects development, reproduction, metabolism, protein folding/unfolding, locomotion, and response to stress. This study addresses the molecular links between aging and immunosenescence in invertebrates.


Asunto(s)
Envejecimiento , Proteínas Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Factores de Virulencia/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad
2.
Data Brief ; 11: 245-251, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28243620

RESUMEN

Here, we present the proteomics dataset of young and middle-aged Caenorhabditis elegans (C. elegans) exposed to Pseudomonas aeruginosa (P. aeruginosa strain PA01), which is related to the article "Proteomic Identification of Virulence-Related Factors in Young and Aging C. elegans infected with Pseudomonas aeruginosa" (C. D. King et. al, in-revisions). This dataset was generated to better understand the effects of aging on molecular mechanisms involved in host response to pathogen exposure. Protein from C. elegans of different age and exposure to P. aeruginosa PA01 or control E. coli OP50 were extracted and tryptically digested. Peptides were labeled with the reagents tandem mass tag (TMT6-plex), separated, and detected by using offline strong-cation exchange and online liquid chromatography - mass spectrometry (SCX - LC - MS/MS & MS3). A separate mixture of peptides were labeled on N-terminal amines and lysines with dimethylation. Dimethylated peptides were analyzed using LC - MS/MS and a portion of the results were used to verify fold-change direction for TMT6-plex experiments. Raw data can be found online at www.CHORUSproject.org, a cloud-based data repository (see specifications table for details).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...