Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int Rep ; 7(6): 1377-1392, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35694561

RESUMEN

Introduction: Podocyte depletion is a histomorphologic indicator of glomerular injury and predicts clinical outcomes. Podocyte estimation methods or podometrics are semiquantitative, technically involved, and laborious. Implementation of high-throughput podometrics in experimental and clinical workflows necessitates an automated podometrics pipeline. Recognizing that computational image analysis offers a robust approach to study cell and tissue structure, we developed and validated PodoCount (a computational tool for automated podocyte quantification in immunohistochemically labeled tissues) using a diverse data set. Methods: Whole-slide images (WSIs) of tissues immunostained with a podocyte nuclear marker and periodic acid-Schiff counterstain were acquired. The data set consisted of murine whole kidney sections (n = 135) from 6 disease models and human kidney biopsy specimens from patients with diabetic nephropathy (DN) (n = 45). Within segmented glomeruli, podocytes were extracted and image analysis was applied to compute measures of podocyte depletion and nuclear morphometry. Computational performance evaluation and statistical testing were performed to validate podometric and associated image features. PodoCount was disbursed as an open-source, cloud-based computational tool. Results: PodoCount produced highly accurate podocyte quantification when benchmarked against existing methods. Podocyte nuclear profiles were identified with 0.98 accuracy and segmented with 0.85 sensitivity and 0.99 specificity. Errors in podocyte count were bounded by 1 podocyte per glomerulus. Podocyte-specific image features were found to be significant predictors of disease state, proteinuria, and clinical outcome. Conclusion: PodoCount offers high-performance podocyte quantitation in diverse murine disease models and in human kidney biopsy specimens. Resultant features offer significant correlation with associated metadata and outcome. Our cloud-based tool will provide end users with a standardized approach for automated podometrics from gigapixel-sized WSIs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37817877

RESUMEN

Podocyte injury plays a crucial role in the progression of diabetic kidney disease (DKD). Injured podocytes demonstrate variations in nuclear shape and chromatin distribution. These morphometric changes have not yet been quantified in podocytes. Furthermore, the molecular mechanisms underlying these variations are poorly understood. Recent advances in omics have shed new lights into the biological mechanisms behind podocyte injury. However, there currently exists no study analyzing the biological mechanisms underlying podocyte morphometric variations during DKD. First, to study the importance of nuclear morphometrics, we performed morphometric quantification of podocyte nuclei from whole slide images of renal tissue sections obtained from murine models of DKD. Our results indicated that podocyte nuclear textural features demonstrate statistically significant difference in diabetic podocytes when compared to control. Additionally, the morphometric features demonstrated the existence of multiple subpopulations of podocytes suggesting a potential cause for their varying response to injury. Second, to study the underlying pathophysiology, we employed single cell RNA sequencing data from the murine models. Our results again indicated five subpopulations of podocytes in control and diabetic mouse models, validating the morphometrics-based results. Additionally, gene set enrichment analysis revealed epithelial to mesenchymal transition and apoptotic pathways in a subgroup of podocytes exclusive to diabetic mice, suggesting the molecular mechanism behind injury. Lastly, our results highlighted two distinct lineages of podocytes in control and diabetic cases suggesting a phenotypical change in podocytes during DKD. These results suggest that textural variations in podocyte nuclei may be key to understanding the pathophysiology behind podocyte injury.

3.
J Am Soc Nephrol ; 32(11): 2795-2813, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34479966

RESUMEN

BACKGROUND: Podocyte depletion precedes progressive glomerular damage in several kidney diseases. However, the current standard of visual detection and quantification of podocyte nuclei from brightfield microscopy images is laborious and imprecise. METHODS: We have developed PodoSighter, an online cloud-based tool, to automatically identify and quantify podocyte nuclei from giga-pixel brightfield whole-slide images (WSIs) using deep learning. Ground-truth to train the tool used immunohistochemically or immunofluorescence-labeled images from a multi-institutional cohort of 122 histologic sections from mouse, rat, and human kidneys. To demonstrate the generalizability of our tool in investigating podocyte loss in clinically relevant samples, we tested it in rodent models of glomerular diseases, including diabetic kidney disease, crescentic GN, and dose-dependent direct podocyte toxicity and depletion, and in human biopsies from steroid-resistant nephrotic syndrome and from human autopsy tissues. RESULTS: The optimal model yielded high sensitivity/specificity of 0.80/0.80, 0.81/0.86, and 0.80/0.91, in mouse, rat, and human images, respectively, from periodic acid-Schiff-stained WSIs. Furthermore, the podocyte nuclear morphometrics extracted using PodoSighter were informative in identifying diseased glomeruli. We have made PodoSighter freely available to the general public as turnkey plugins in a cloud-based web application for end users. CONCLUSIONS: Our study demonstrates an automated computational approach to detect and quantify podocyte nuclei in standard histologically stained WSIs, facilitating podocyte research, and enabling possible future clinical applications.


Asunto(s)
Nube Computacional , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedades Renales/patología , Glomérulos Renales/citología , Podocitos/ultraestructura , Animales , Automatización , Recuento de Células , Núcleo Celular/ultraestructura , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía , Reacción del Ácido Peryódico de Schiff , Ratas , Especificidad de la Especie
4.
Artículo en Inglés | MEDLINE | ID: mdl-34366540

RESUMEN

Histologic examination of interstitial fibrosis and tubular atrophy (IFTA) is critical to determine the extent of irreversible kidney injury in renal disease. The current clinical standard involves pathologist's visual assessment of IFTA, which is prone to inter-observer variability. To address this diagnostic variability, we designed two case studies (CSs), including seven pathologists, using HistomicsTK- a distributed system developed by Kitware Inc. (Clifton Park, NY). Twenty-five whole slide images (WSIs) were classified into a training set of 21 and a validation set of four. The training set was composed of seven unique subsets, each provided to an individual pathologist along with four common WSIs from the validation set. In CS 1, all pathologists individually annotated IFTA in their respective slides. These annotations were then used to train a deep learning algorithm to computationally segment IFTA. In CS 2, manual and computational annotations from CS 1 were first reviewed by the annotators to improve concordance of IFTA annotation. Both the manual and computational annotation processes were then repeated as in CS1. The inter-observer concordance in the validation set was measured by Krippendorff's alpha (KA). The KA for the seven pathologists in CS1 was 0.62 with CI [0.57, 0.67], and after reviewing each other's annotations in CS2, 0.66 with CI [0.60, 0.72]. The respective CS1 and CS2 KA were 0.58 with CI [0.52, 0.64] and 0.63 with CI [0.56, 0.69] when including the deep learner as an eighth annotator. These results suggest that our designed annotation framework refines agreement of spatial annotation of IFTA and demonstrates a human-AI approach to significantly improve the development of computational models.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34366541

RESUMEN

With the rapid advancement in multiplex tissue staining, computer hardware, and machine learning, computationally-based tools are becoming indispensable for the evaluation of digital histopathology. Historically, standard histochemical staining methods such as hematoxylin and eosin, periodic acid-Schiff, and trichrome have been the gold standard for microscopic tissue evaluation by pathologists, and therefore brightfield microscopy images derived from such stains are primarily used for developing computational pathology tools. However, these histochemical stains are nonspecific in terms of highlighting structures and cell types. In contrast, immunohistochemical stains use antibodies to specifically detect and quantify proteins, which can be used to specifically highlight structures and cell types of interest. Traditionally, such immunofluorescence-based methods are only able to simultaneously stain a limited number of target proteins/antigens, typically up to three channels. Fluorescence-based multiplex immunohistochemistry (mIHC) is a new technology that enables simultaneous localization and quantification of numerous proteins/antigens, allowing for the possibility to detect a wide range of histologic structures and cell types within tissue. However, this method is limited by cost, specialized equipment, technical expertise, and time. In this study, we implemented a deep learning-based pipeline to synthetically generate in silico mIHC images from brightfield images of tissue slides-stained with routinely used histochemical stains, in particular PAS. Our tool was trained using fluorescence-based mIHC images as the ground-truth. The proposed pipeline offers high contrast detection of structures in brightfield imaged tissue sections stained with standard histochemical stains. We demonstrate the performance of our pipeline by computationally detecting multiple compartments in kidney biopsies, including cell nuclei, collagen/fibrosis, distal tubules, proximal tubules, endothelial cells, and leukocytes, from PAS-stained tissue sections. Our work can be extended for other histologic structures and tissue types and can be used as a basis for future automated annotation of histologic structures and cell types without the added cost of actually generating mIHC slides.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34366543

RESUMEN

In diabetic kidney disease (DKD), podocyte depletion, and the subsequent migration of parietal epithelial cells (PECs) to the tuft, is a precursor to progressive glomerular damage, but the limitations of brightfield microscopy currently preclude direct pathological quantitation of these cells. Here we present an automated approach to podocyte and PEC detection developed using kidney sections from mouse model emulating DKD, stained first for Wilms' Tumor 1 (WT1) (podocyte and PEC marker) by immunofluorescence, then post-stained with periodic acid-Schiff (PAS). A generative adversarial network (GAN)-based pipeline was used to translate these PAS-stained sections into WT1-labeled IF images, enabling in silico label-free podocyte and PEC identification in brightfield images. Our method detected WT1-positive cells with high sensitivity/specificity (0.87/0.92). Additionally, our algorithm performed with a higher Cohen's kappa (0.85) than the average manual identification by three renal pathologists (0.78). We propose that this pipeline will enable accurate detection of WT1-positive cells in research applications.

7.
Sci Rep ; 10(1): 11064, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632119

RESUMEN

The Ki-67 index is an established prognostic factor in gastrointestinal neuroendocrine tumors (GI-NETs) and defines tumor grade. It is currently estimated by microscopically examining tumor tissue single-immunostained (SS) for Ki-67 and counting the number of Ki-67-positive and Ki-67-negative tumor cells within a subjectively picked hot-spot. Intraobserver variability in this procedure as well as difficulty in distinguishing tumor from non-tumor cells can lead to inaccurate Ki-67 indices and possibly incorrect tumor grades. We introduce two computational tools that utilize Ki-67 and synaptophysin double-immunostained (DS) slides to improve the accuracy of Ki-67 index quantitation in GI-NETs: (1) Synaptophysin-KI-Estimator (SKIE), a pipeline automating Ki-67 index quantitation via whole-slide image (WSI) analysis and (2) deep-SKIE, a deep learner-based approach where a Ki-67 index heatmap is generated throughout the tumor. Ki-67 indices for 50 GI-NETs were quantitated using SKIE and compared with DS slide assessments by three pathologists using a microscope and a fourth pathologist via manually ticking off each cell, the latter of which was deemed the gold standard (GS). Compared to the GS, SKIE achieved a grading accuracy of 90% and substantial agreement (linear-weighted Cohen's kappa 0.62). Using DS WSIs, deep-SKIE displayed a training, validation, and testing accuracy of 98.4%, 90.9%, and 91.0%, respectively, significantly higher than using SS WSIs. Since DS slides are not standard clinical practice, we also integrated a cycle generative adversarial network into our pipeline to transform SS into DS WSIs. The proposed methods can improve accuracy and potentially save a significant amount of time if implemented into clinical practice.


Asunto(s)
Aprendizaje Profundo , Neoplasias Gastrointestinales/patología , Clasificación del Tumor/métodos , Tumores Neuroendocrinos/patología , Neoplasias Gastrointestinales/metabolismo , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Clasificación del Tumor/estadística & datos numéricos , Tumores Neuroendocrinos/metabolismo , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sinaptofisina/metabolismo
8.
Nat Mach Intell ; 1(2): 112-119, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31187088

RESUMEN

Neural networks promise to bring robust, quantitative analysis to medical fields. However, their adoption is limited by the technicalities of training these networks and the required volume and quality of human-generated annotations. To address this gap in the field of pathology, we have created an intuitive interface for data annotation and the display of neural network predictions within a commonly used digital pathology whole-slide viewer. This strategy used a 'human-in-the-loop' to reduce the annotation burden. We demonstrate that segmentation of human and mouse renal micro compartments is repeatedly improved when humans interact with automatically generated annotations throughout the training process. Finally, to show the adaptability of this technique to other medical imaging fields, we demonstrate its ability to iteratively segment human prostate glands from radiology imaging data.

9.
J Med Imaging (Bellingham) ; 5(2): 027501, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721517

RESUMEN

Blood smear is a crucial diagnostic aid. Quantification of both solitary and overlapping erythrocytes within these smears, directly from their whole slide images (WSIs), remains a challenge. Existing software designed to accomplish the computationally extensive task of hematological WSI analysis is too expensive and is widely unavailable. We have thereby developed a fully automated software targeted for erythrocyte detection and quantification from WSIs. We define an optimal region within the smear, which contains cells that are neither too scarce/damaged nor too crowded. We detect the optimal regions within the smear and subsequently extract all the cells from these regions, both solitary and overlapped, the latter of which undergoes a clump splitting before extraction. The performance was systematically tested on 28 WSIs of blood smears obtained from 13 different species from three classes of the subphylum vertebrata including birds, mammals, and reptiles. These data pose as an immensely variant erythrocyte database with diversity in size, shape, intensity, and textural features. Our method detected [Formula: see text] more cells than that detected from the traditional monolayer and resulted in a testing accuracy of 99.14% for the classification into their respective class (bird, mammal, or reptile) and a testing accuracy of 84.73% for the classification into their respective species. The results suggest the potential employment of this software for the diagnosis of hematological disorders, such as sickle cell anemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...