Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3175, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264059

RESUMEN

Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.


Asunto(s)
Nucleósidos , Nucleósidos de Pirimidina , Humanos , Ratones , Animales , Nucleósidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Eliminación Renal , Proteínas Portadoras/metabolismo , Antimetabolitos , Proteínas de Transporte de Nucleósidos/metabolismo , Riñón/metabolismo
3.
Methods Mol Biol ; 2660: 95-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191793

RESUMEN

Nucleoside analogs (NAs) are an established class of anticancer agents being used clinically for the treatment of diverse cancers, either as monotherapy or in combination with other established anticancer or pharmacological agents. To date, nearly a dozen anticancer NAs are approved by the FDA, and several novel NAs are being tested in preclinical and clinical trials for future applications. However, improper delivery of NAs into tumor cells because of alterations in expression of one or more drug carrier proteins (e.g., solute carrier (SLC) transporters) within tumor cells or cells surrounding the tumor microenvironment stands as one of the primary reasons for therapeutic drug resistance. The combination of tissue microarray (TMA) and multiplexed immunohistochemistry (IHC) is an advanced, high-throughput approach over conventional IHC that enables researchers to effectively investigate alterations to numerous such chemosensitivity determinants simultaneously in hundreds of tumor tissues derived from patients. In this chapter, taking an example of a TMA from pancreatic cancer patients treated with gemcitabine (a NA chemotherapeutic agent), we describe the step-by-step procedure of performing multiplexed IHC, imaging of TMA slides, and quantification of expression of some relevant markers in these tissue sections as optimized in our laboratory and discuss considerations while designing and carrying out this experiment.


Asunto(s)
Antineoplásicos , Transporte Biológico , Resistencia a Antineoplásicos , Gemcitabina , Inmunohistoquímica , Nucleósidos , Análisis de Matrices Tisulares , Humanos , Anticuerpos , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Fluorescencia , Gemcitabina/metabolismo , Gemcitabina/uso terapéutico , Inmunohistoquímica/métodos , Nucleósidos/análogos & derivados , Nucleósidos/metabolismo , Nucleósidos/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Adhesión en Parafina , Análisis de Matrices Tisulares/métodos , Fijación del Tejido
4.
Cells ; 11(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359851

RESUMEN

Podocytes are highly differentiated epithelial cells, and their structural and functional integrity is compromised in a majority of glomerular and renal diseases, leading to proteinuria, chronic kidney disease, and kidney failure. Traditional agonists (e.g., pioglitazone) and selective modulators (e.g., GQ-16) of peroxisome-proliferator-activated-receptor-γ (PPARγ) reduce proteinuria in animal models of glomerular disease and protect podocytes from injury via PPARγ activation. This indicates a pivotal role for PPARγ in maintaining glomerular function through preservation of podocytes distinct from its well-understood role in driving insulin sensitivity and adipogenesis. While its transcriptional role in activating adipokines and adipogenic genes is well-established in adipose tissue, liver and muscle, understanding of podocyte PPARγ signaling remains limited. We performed a comprehensive analysis of PPARγ mRNA variants due to alternative splicing, in human podocytes and compared with adipose tissue. We found that podocytes express the ubiquitous PPARγ Var 1 (encoding γ1) and not Var2 (encoding γ2), which is mostly restricted to adipose tissue and liver. Additionally, we detected expression at very low level of Var4, and barely detectable levels of other variants, Var3, Var11, VartORF4 and Var9, in podocytes. Furthermore, a distinct podocyte vs. adipocyte PPAR-promoter-response-element containing gene expression, enrichment and pathway signature was observed, suggesting differential regulation by podocyte specific PPARγ1 variant, distinct from the adipocyte-specific γ2 variant. In summary, podocytes and glomeruli express several PPARγ variants, including Var1 (γ1) and excluding adipocyte-specific Var2 (γ2), which may have implications in podocyte specific signaling and pathophysiology. This suggests that that new selective PPARγ modulators can be potentially developed that will be able to distinguish between the two forms, γ1 and γ2, thus forming a basis of novel targeted therapeutic avenues.


Asunto(s)
Podocitos , Animales , Humanos , Podocitos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tejido Adiposo/metabolismo , Proteinuria/metabolismo , Proteínas Portadoras/metabolismo
5.
Pharmacol Ther ; 240: 108300, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283452

RESUMEN

Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.


Asunto(s)
Neoplasias , Proteínas de Transporte de Nucleósidos , Humanos , Proteínas de Transporte de Nucleósidos/metabolismo , Adenosina/metabolismo , Nucleósidos , Receptores Purinérgicos P1/metabolismo , Neoplasias/tratamiento farmacológico , Inmunosupresores , Microambiente Tumoral
6.
Front Cell Dev Biol ; 10: 924751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784478

RESUMEN

Adriamycin (ADR)-induced nephropathy remains the leading model to study human primary focal segmental glomerulosclerosis (FSGS), a common pathway for podocyte damage and glomerular loss of function that leads to chronic kidney disease. However, the use of this model for reverse genetics is limited by historical categorization of C57BL/6 mice as an ADR-resistant strain, which is also the most common genetically modified strain. Additionally, conflicting reports exist utilizing C57BL/6 for ADR-nephrosis due to lack of understanding of substrain differences (J/N) and variability in ADR dosage, timing, and frequency to induce damage. We have undertaken a systematic approach to elucidate the specifics of ADR-nephrosis in C57BL/6 N and J substrains. We induced nephropathy with 2 doses of ADR, and measured albuminuria for 6 weeks and performed histological evaluations. Our findings revealed induction of robust and modest proteinuria in N and J substrains, respectively. The serum creatinine levels were elevated in N, but not J substrain. Both the substrains showed reduction in body weight with N greater than J, although mortality remained at 0% in both substrains. Histological analysis showed worse renal lesions in the N than the J substrain. Podocyte markers synaptopodin, nephrin, podocin, and WT1 were reduced to a greater extent in the N than the J substrain. In summary, we provide the nephrology community with a reproducible mouse model for FSGS, in a strain otherwise assumed to be ADR-resistant and highlight the differences between J and N substrains. This enables future studies, especially concerning genetically manipulated animal models in C57BL/6.

7.
Cancers (Basel) ; 14(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35804885

RESUMEN

Anticancer nucleoside analogs produce adverse, and at times, dose-limiting hematological toxicities that can compromise treatment efficacy, yet the mechanisms of such toxicities are poorly understood. Recently, cellular nucleoside transport has been implicated in normal blood cell formation with studies from nucleoside transporter-deficient mice providing additional insights into the regulation of mammalian hematopoiesis. Furthermore, several idiopathic human genetic disorders have revealed nucleoside transport as an important component of mammalian hematopoiesis because mutations in individual nucleoside transporter genes are linked to various hematological abnormalities, including anemia. Here, we review recent developments in nucleoside transporters, including their transport characteristics, their role in the regulation of hematopoiesis, and their potential involvement in the occurrence of adverse hematological side effects due to nucleoside drug treatment. Furthermore, we discuss the putative mechanisms by which aberrant nucleoside transport may contribute to hematological abnormalities and identify the knowledge gaps where future research may positively impact treatment outcomes for patients undergoing various nucleoside analog therapies.

8.
iScience ; 25(5): 104193, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35479410

RESUMEN

The involvement of membrane-bound solute carriers (SLCs) in neoplastic transdifferentiation processes is poorly defined. Here, we examined changes in the SLC landscape during epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We show that two SLCs from the organic anion/cation transporter family, SLC22A10 and SLC22A15, favor EMT via interferon (IFN) α and γ signaling activation of receptor tyrosine kinase-like orphan receptor 1 (ROR1) expression. In addition, SLC22A10 and SLC22A15 allow tumor cell accumulation of glutathione to support EMT via the IFNα/γ-ROR1 axis. Moreover, a pan-SLC22A inhibitor lesinurad reduces EMT-induced metastasis and gemcitabine chemoresistance to prolong survival in mouse models of pancreatic cancer, thus identifying new vulnerabilities for human PDAC.

9.
iScience ; 25(4): 104001, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35310946

RESUMEN

Glomerular disease manifests as nephrotic syndrome (NS) with high proteinuria and comorbidities, and is frequently refractory to standard treatments. We hypothesized that a selective modulator of PPARγ, GQ-16, will provide therapeutic advantage over traditional PPARγ agonists for NS treatment. We demonstrate in a pre-clinical NS model that proteinuria is reduced with pioglitazone to 64%, and robustly with GQ-16 to 81% of nephrosis, comparable to controls. Although both GQ-16 and pioglitazone restore glomerular-Nphs1, hepatic-Pcsk9 and serum-cholesterol, only GQ-16 restores glomerular-Nrf2, and reduces hypoalbuminemia and hypercoagulopathy. GQ-16 and pioglitazone restore common and distinct glomerular gene expression analyzed by RNA-seq and induce insulin sensitizing adipokines to various degrees. Pioglitazone but not GQ-16 induces more lipid accumulation and aP2 in adipocytes and white adipose tissue. We conclude that selective modulation of PPARγ by a partial agonist, GQ-16, is more advantageous than pioglitazone in reducing proteinuria, NS associated comorbidities, and adipogenic side effects of full PPARγ agonists.

10.
Molecules ; 26(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34299488

RESUMEN

Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Imidazoles/química , Imidazoles/farmacología , Animales , Descubrimiento de Drogas/métodos , Humanos , Relación Estructura-Actividad
11.
Nat Commun ; 12(1): 1248, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623001

RESUMEN

Mutations in human equilibrative nucleoside transporter 3 (ENT3) encoded by SLC29A3 results in anemia and erythroid hypoplasia, suggesting that ENT3 may regulate erythropoiesis. Here, we demonstrate that lysosomal ENT3 transport of taurine-conjugated bile acids (TBA) facilitates TBA chemical chaperone function and alleviates endoplasmic reticulum (ER) stress in expanding mouse hematopoietic stem and progenitor cells (HSPCs). Slc29a3-/- HSPCs accumulate less TBA despite elevated levels of TBA in Slc29a3-/- mouse plasma and have elevated basal ER stress, reactive oxygen species (ROS), and radiation-induced apoptosis. Reintroduction of ENT3 allows for increased accumulation of TBA into HSPCs, which results in TBA-mediated alleviation of ER stress and erythroid apoptosis. Transplanting TBA-preconditioned HSPCs expressing ENT3 into Slc29a3-/- mice increase bone marrow repopulation capacity and erythroid pool size and prevent early mortalities. Together, these findings suggest a putative role for a facilitative lysosomal transporter in the bile acid regulation of ER stress in mouse HSPCs which may have implications in erythroid biology, the treatment of anemia observed in ENT3-mutated human genetic disorders, and nucleoside analog drug therapy.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Estrés del Retículo Endoplásmico , Células Madre Hematopoyéticas/metabolismo , Lisosomas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ácidos y Sales Biliares/sangre , Transporte Biológico/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Trasplante de Células Madre Hematopoyéticas , Concentración de Iones de Hidrógeno , Lisosomas/efectos de los fármacos , Metabolómica , Ratones , Proteínas de Transporte de Nucleósidos/metabolismo , Taurina/metabolismo , Ácido Tauroquenodesoxicólico/farmacología
12.
Autophagy ; 17(11): 3813-3832, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33404280

RESUMEN

Alzheimer disease (AD) is usually accompanied by two prominent pathological features, cerebral accumulation of amyloid-ß (Aß) plaques and presence of MAPT/tau neurofibrillary tangles. Dysregulated clearance of Aß largely contributes to its accumulation and plaque formation in the brain. Macroautophagy/autophagy is a lysosomal degradative process, which plays an important role in the clearance of Aß. Failure of autophagic clearance of Aß is currently acknowledged as a contributing factor to increased accumulation of Aß in AD brains. In this study, we have identified crocetin, a pharmacologically active constituent from the flower stigmas of Crocus sativus, as a potential inducer of autophagy in AD. In the cellular model, crocetin induced autophagy in N9 microglial and primary neuron cells through STK11/LKB1 (serine/threonine kinase 11)-mediated AMP-activated protein kinase (AMPK) pathway activation. Autophagy induction by crocetin significantly increased Aß clearance in N9 cells. Moreover, crocetin crossed the blood-brain barrier and induced autophagy in the brains' hippocampi of wild-type male C57BL/6 mice. Further studies in transgenic male 5XFAD mice, as a model of AD, revealed that one-month treatment with crocetin significantly reduced Aß levels and neuroinflammation in the mice brains and improved memory function by inducing autophagy that was mediated by AMPK pathway activation. Our findings support further development of crocetin as a pharmacological inducer of autophagy to prevent, slow down progression, and/or treat AD.Abbreviations: Aß: amyloid-ß; ABCB1/P-gp/P-glycoprotein: ATP-binding cassette, subfamily B (MDR/TAP), member 1; AD: Alzheimer disease; AMPK/PRKAA: AMP-activated protein kinase; APP: amyloid beta (A4) precursor protein; ATG: autophagy related; BBB: blood-brain barrier; BECN1: beclin 1, autophagy related; CAMKK2/CaMKKß: calcium/calmodulin-dependent protein kinase kinase 2, beta; CSE: Crocus sativus extract; CTSB: cathepsin B; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; Kp: brain partition coefficient; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule-associated protein 2; MAPK/ERK: mitogen-activated protein kinase; MAPT/tau: microtubule-associated protein tau; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTOR: mechanistic target of rapamycin kinase; MWM: Morris water maze; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NMDA: N-methyl-d-aspartic acid; RPTOR: regulatory associated protein of MTOR; RPS6KB1/p70S6K: ribosomal protein S6 kinase 1; SQSTM1: sequestosome 1; SRB: sulforhodamine B; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TSC2: TSC complex subunit 2; ULK1: unc-51 like kinase 1.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Carotenoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Vitamina A/análogos & derivados , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Vitamina A/farmacología
13.
Mol Cancer Ther ; 20(2): 410-422, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33298588

RESUMEN

Epithelial-mesenchymal transition (EMT) in cancer cells drives cancer chemoresistance, yet the molecular events of EMT that underpin the acquisition of chemoresistance are poorly understood. Here, we demonstrate a loss of gemcitabine chemosensitivity facilitated by human equilibrative nucleoside transporter 1 (ENT1) during EMT in pancreatic cancer and identify that cadherin switching from the epithelial (E) to neuronal (N) type, a hallmark of EMT, contributes to this loss. Our findings demonstrate that N-cadherin decreases ENT1 expression, membrane localization, and gemcitabine transport, while E-cadherin augments each of these. Besides E- and N-cadherin, another epithelial cell adhesion molecule, EpCAM, played a more prominent role in determining ENT1 membrane localization. Forced expression of EpCAM opposed cadherin switching with restored ENT1 expression, membrane localization, and gemcitabine transport in EMT-committed pancreatic cancer cells. In gemcitabine-treated mice, EpCAM-positive tumors had high ENT1 expression and reduced metastasis, whereas tumors with N-cadherin expression resisted gemcitabine treatment and formed extensive secondary metastatic nodules. Tissue microarray profiling and multiplexed IHC analysis of pancreatic cancer patient-derived primary tumors revealed EpCAM and ENT1 cell surface coexpression is favored, and ENT1 plasma membrane expression positively predicted median overall survival times in patients treated with adjuvant gemcitabine. Together, our findings identify ENT1 as an inadvertent target of EMT signaling mediated by cadherin switching and provide a mechanism by which mesenchymal pancreatic cancer cells evade gemcitabine therapy during EMT.


Asunto(s)
Desoxicitidina/análogos & derivados , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Animales , Línea Celular Tumoral , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Humanos , Ratones , Gemcitabina
14.
Nat Commun ; 11(1): 1924, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317630

RESUMEN

Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Células Epiteliales/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción SOX9/metabolismo , Animales , Muerte Celular , Células Epiteliales/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Queratinocitos/metabolismo , Riñón/metabolismo , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
15.
Nat Commun ; 10(1): 2943, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270333

RESUMEN

Mutations exclusively in equilibrative nucleoside transporter 3 (ENT3), the only intracellular nucleoside transporter within the solute carrier 29 (SLC29) gene family, cause an expanding spectrum of human genetic disorders (e.g., H syndrome, PHID syndrome, and SHML/RDD syndrome). Here, we identify adult stem cell deficits that drive ENT3-related abnormalities in mice. ENT3 deficiency alters hematopoietic and mesenchymal stem cell fates; the former leads to stem cell exhaustion, and the latter leads to breaches of mesodermal tissue integrity. The molecular pathogenesis stems from the loss of lysosomal adenosine transport, which impedes autophagy-regulated stem cell differentiation programs via misregulation of the AMPK-mTOR-ULK axis. Furthermore, mass spectrometry-based metabolomics and bioenergetics studies identify defects in fatty acid utilization, and alterations in mitochondrial bioenergetics can additionally propel stem cell deficits. Genetic, pharmacologic and stem cell interventions ameliorate ENT3-disease pathologies and extend the lifespan of ENT3-deficient mice. These findings delineate a primary pathogenic basis for the development of ENT3 spectrum disorders and offer critical mechanistic insights into treating human ENT3-related disorders.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Adenosina/metabolismo , Adenilato Quinasa/metabolismo , Células Madre Adultas/ultraestructura , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Autofagia , Transporte Biológico , Diferenciación Celular , Autorrenovación de las Células , Metabolismo Energético , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Fenotipo , Ribonucleótidos/farmacología , Transducción de Señal , Análisis de Supervivencia , Serina-Treonina Quinasas TOR/metabolismo
16.
Curr Osteoporos Rep ; 16(4): 434-442, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29855795

RESUMEN

PURPOSE OF REVIEW: To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. RECENT FINDINGS: Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Médula Ósea/metabolismo , Remodelación Ósea , Osteoblastos/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Médula Ósea/patología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteoporosis/patología , Transducción de Señal
17.
Drug Metab Dispos ; 46(5): 600-609, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29530865

RESUMEN

Combination antiretroviral drug treatments depend on 3'-deoxy-nucleoside analogs such as 3'-azido-3'-deoxythymidine (AZT) and 2'3'-dideoxyinosine (DDI). Despite being effective in inhibiting human immunodeficiency virus replication, these drugs produce a range of toxicities, including myopathy, pancreatitis, neuropathy, and lactic acidosis, that are generally considered as sequelae to mitochondrial damage. Although cell surface-localized nucleoside transporters, such as human equilibrative nucleoside transporter 2 (hENT2) and human concentrative nucleoside transporter 1 (hCNT1), are known to increase the carrier-mediated uptake of 3'-deoxy-nucleoside analogs into cells, another ubiquitously expressed intracellular nucleoside transporter (namely, hENT3) has been implicated in the mitochondrial transport of 3'-deoxy-nucleoside analogs. Using site-directed mutagenesis, generation of chimeric hENTs, and 3H-permeant flux measurements in mutant/chimeric RNA-injected Xenopus oocytes, here we identified the molecular determinants of hENT3 that dictate membrane translocation of 3'-deoxy-nucleoside analogs. Our findings demonstrated that whereas hENT1 had no significant transport activity toward 3'-deoxy-nucleoside analogs, hENT3 was capable of transporting 3'-deoxy-nucleoside analogs similar to hENT2. Transport analyses of hENT3-hENT1 chimeric constructs demonstrated that the N-terminal half of hENT3 is primarily responsible for the hENT3-3'-deoxy-nucleoside analog interaction. In addition, mutagenic studies identified that 225D and 231L in the N-terminal half of hENT3 partially contribute to the ability of hENT3 to transport AZT and DDI. The identification of the transporter segment and amino acid residues that are important in hENT3 transport of 3'-deoxy-nucleoside analogs may present a possible mechanism for overcoming the adverse toxicities associated with 3'-deoxy-nucleoside analog treatment and may guide rational development of novel nucleoside analogs.


Asunto(s)
Proteínas de Transporte de Nucleósidos/metabolismo , Animales , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Xenopus laevis/metabolismo
19.
Oncotarget ; 8(40): 67966-67979, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978088

RESUMEN

Pancreatic cancer has a devastating prognosis due to 80-90% of diagnostic cases occurring when metastasis has already presented. Activation of the epithelial-mesenchymal transition (EMT) is a prerequisite for metastasis because it allows for the dissemination of tumor cells to blood stream and secondary organs. Here, we sought to determine the role of SET oncoprotein, an endogenous inhibitor of PP2A, in EMT and pancreatic tumor progression. Among the two major isoforms of SET (isoform 1 and isoform 2), higher protein levels of SET isoform 2 were identified in aggressive pancreatic cancer cell lines. Overexpressing SET isoform 2, and to a lesser extent SET isoform 1, in epithelial cell lines promoted EMT-like features by inducing mesenchymal characteristics and promoting cellular proliferation, migration, invasion, and colony formation. Consistently, knockdown of SET isoforms in the mesenchymal cell line partially resisted these characteristics and promoted epithelial features. SET-induced EMT was likely facilitated by increased N-cadherin overexpression, decreased PP2A activity and/or increased expression of key EMT-driving transcription factors. Additionally, SET overexpression activated the Rac1/JNK/c-Jun signaling pathway that induced transcriptional activation of N-cadherin expression. In vivo, SET isoform 2 overexpression significantly correlated with increased N-cadherin in human PDAC and to tumor burden and metastatic ability in an orthotopic mouse tumor model. These findings identify a new role for SET in cancer and have implications for the design and targeting of SET for intervening pancreatic tumor progression.

20.
J Biol Chem ; 292(36): 14775-14785, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28729424

RESUMEN

Equilibrative nucleoside transporters (ENTs) translocate hydrophilic nucleosides across cellular membranes and are essential for salvage nucleotide synthesis and purinergic signaling. Unlike the prototypic human ENT members hENT1 and hENT2, which mediate plasma membrane nucleoside transport at pH 7.4, hENT3 is an acidic pH-activated lysosomal transporter partially localized to mitochondria. Recent studies demonstrate that hENT3 is indispensable for lysosomal homeostasis, and that mutations in hENT3 can result in a spectrum of lysosomal storage-like disorders. However, despite hENT3's prominent role in lysosome pathophysiology, the molecular basis of hENT3-mediated transport is unknown. Therefore, we sought to examine the mechanistic basis of acidic pH-driven hENT3 nucleoside transport with site-directed mutagenesis, homology modeling, and [3H]adenosine flux measurements in mutant RNA-injected Xenopus oocytes. Scanning mutagenesis of putative residues responsible for pH-dependent transport via hENT3 revealed that the ionization states of Asp-219 and Glu-447, and not His, strongly determined the pH-dependent transport permissible-impermissible states of the transporter. Except for substitution with certain isosteric and polar residues, substitution of either Asp-219 or Glu-447 with any other residues resulted in robust activity that was pH-independent. Dual substitution of Asp-219 and Glu-447 to Ala sustained pH-independent activity over a broad range of physiological pH (pH 5.5-7.4), which also maintained stringent substrate selectivity toward endogenous nucleosides and clinically used nucleoside drugs. Our results suggest a putative pH-sensing role for Asp-219 and Glu-447 in hENT3 and that the size, ionization state, or electronegative polarity at these positions is crucial for obligate acidic pH-dependent activity.


Asunto(s)
Proteínas de Transporte de Nucleósidos/química , Proteínas de Transporte de Nucleósidos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mutación , Proteínas de Transporte de Nucleósidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...