Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(47): 71326-71337, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35595904

RESUMEN

Aedes aegypti is the main vector of yellow fever, chikungunya, Zika, and dengue worldwide and is managed by using chemical insecticides. Though effective, their indiscriminate use brings in associated problems on safety to non-target and the environment. This supports the use of plant-based essential oil (EO) formulations as they are safe to use with limited effect on non-target organisms. Quick volatility and degradation of EO are a hurdle in its use; the present study attempts to develop nanoemulsions (NE) of Trachyspermum ammi EO and its constituent thymol using Tween 80 as surfactant by ultrasonication method. The NE of EO had droplet size ranging from 65 ± 0.7 to 83 ± 0.09 nm and a poly dispersity index (PDI) value of 0.18 ± 0.003 to 0.20 ± 0.07 from 1 to 60 days of storage. The NE of thymol showed a droplet size ranging from 167 ± 1 to 230 ± 1 nm and PDI value of 0.30 ± 0.03 to 0.40 ± 0.008 from 1 to 60 days of storage. The droplet shape of both NEs appeared spherical under a transmission electron microscope (TEM). The larvicidal effect of NEs of EO and thymol was better than BEs (Bulk emulsion) of EO and thymol against Ae. aegypti. Among the NEs, thymol (LC50 34.89 ppm) had better larvicidal action than EO (LC50 46.73 ppm). Exposure to NEs of EO and thymol causes the shrinkage of the larval cuticle and inhibited the acetylcholinesterase (AChE) activity in Ae. aegypti. Our findings show the enhanced effect of NEs over BEs which facilitate its use as an alternative control measure for Ae. aegypti.


Asunto(s)
Aedes , Ammi , Apiaceae , Insecticidas , Aceites Volátiles , Virus Zika , Acetilcolinesterasa , Ácidos Alcanesulfónicos , Animales , Emulsiones/farmacología , Insecticidas/química , Larva , Mosquitos Vectores , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Polisorbatos/farmacología , Tensoactivos/farmacología , Timol/farmacología
2.
J Med Entomol ; 59(2): 693-699, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850037

RESUMEN

Detection of Orientia tsutsugamushi DNA in a trombiculid mite chigger species suggests that it might be a potential vector of scrub typhus in an endemic area. Over a period of 20 mo, 85 rats were trapped, 57 had chiggers that were identified by standard morphometric techniques. The chigger pools were assessed by performing PCR assays targeting fragments of the single-copy genes 56 kDa type-specific antigen gene (TSA56) by nested PCR and the 47 kDa (htrA) quantitative real-time PCR (qPCR). The novel traD SYBR green assay that detects a multicopy gene was also performed. In total, 27 chigger pools were positive by traD qPCR, of which only 7 were positive by 47 kDa qPCR and in 3 of these, 56 kDa gene was amplified by nested PCR. Orientia tsutsugamushi-specific DNA was detected in Ascoschoengastia spp., Schoengastiella ligula, Leptotrombidium rajasthanense, Leptotrombidium deliense, and Leptotrombidium jayawickremei chigger pools. Therefore, they could be potential vectors of scrub typhus in Southern India. The three 56 kDa sequences belonged to TA716 genotype and Kato genogroup. Further studies are needed to confirm these chigger species as scrub typhus vectors in Northern Tamil Nadu.


Asunto(s)
Orientia tsutsugamushi , Enfermedades de los Roedores , Tifus por Ácaros , Trombiculidae , Animales , India/epidemiología , Orientia tsutsugamushi/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Roedores , Tifus por Ácaros/epidemiología , Tifus por Ácaros/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...