Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Conserv Dent Endod ; 27(2): 154-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38463465

RESUMEN

Context: Gutta-percha (GP) gets contaminated during handling. It becomes imperative to ensure GP is sterile before placement in root canal space. Aims: The aim of the study was to evaluate and compare the tensile strength of GP treated with four different disinfectant solutions: 3% sodium hypochlorite (NaOCl), amla juice (AJ), Aloe vera (AV) juice, and pancha tulsi (PT). Settings and Design: The study design was an in vitro study. Materials and Methods: Fifty GP cones with a size of 30 were procured from sealed packages in five different groups. Experimental groups were disinfected for 1 min with 3% NaOCl, AJ, AV, and PT except the control group. Tensile and Brinell Testing Machine is used to measure the tensile strengths of GP. Statistical Analysis Used: Results were subjected to statistical analysis using the Kruskal-Wallis test followed by Dunn's post hoc test. Results: The mean tensile strength values for Groups A, B, C, D, and E are 9.49 Mpa, 13.33 Mpa, 12.58 Mpa, 12.69 MPa, and 13.56 MPa, respectively. In the herbal disinfectant group, such as AJ, AV, and PT, the tensile strength was not significantly altered, whereas in the 3% NaOCl group, it was reduced considerably. Conclusions: AJ, AV juice, and PT as a GP disinfectant do not alter the tensile strength of GP cones.

2.
J Helminthol ; 97: e72, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681419

RESUMEN

In this study, morphological and molecular features were used to identify a new Steinernema sp. from Chhattisgarh, India. Morphological and molecular features provide evidence for placing the new species into the "bicornutum" clade. The new species is characterized by the following morphological features: infective juveniles with a body length of 587 (494-671) µm; a distance from the anterior end to excretory pore of 46 (43-50) µm; a distance from anterior end to nerve ring of 72 µm (61-85 µm); and E% of 88 (77-97). The first-generation males are characterised by 27 genital papillae and very short spicules, with a length of 61 µm (53-67) µm. The SW% and GS% ratio of S. shori n. sp. are 139 (107-190) and 75 (62-90), respectively. The new species is further characterized by sequences of the internal transcribed spacer and partial 28S regions of the ribosomal DNA. Phylogenetic analyses show that S. shori n. sp. is most closely related to S. abbasi, S. kandii, and S. yirgalemense.


Asunto(s)
Rabdítidos , Animales , Masculino , Filogenia , India , Rabdítidos/genética , ADN Ribosómico/genética , Genitales
3.
Front Genet ; 14: 1150132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303948

RESUMEN

Maize is recognized as the queen of cereals, with an ability to adapt to diverse agroecologies (from 58oN to 55oS latitude) and the highest genetic yield potential among cereals. Under contemporary conditions of global climate change, C4 maize crops offer resilience and sustainability to ensure food, nutritional security, and farmer livelihood. In the northwestern plains of India, maize is an important alternative to paddy for crop diversification in the wake of depleting water resources, reduced farm diversity, nutrient mining, and environmental pollution due to paddy straw burning. Owing to its quick growth, high biomass, good palatability, and absence of anti-nutritional components, maize is also one of the most nutritious non-legume green fodders. It is a high-energy, low-protein forage commonly used for dairy animals like cows and buffalos, often in combination with a complementary high-protein forage such as alfalfa. Maize is also preferred for silage over other fodders due to its softness, high starch content, and sufficient soluble sugars required for proper ensiling. With a rapid population increase in developing countries like China and India, there is an upsurge in meat consumption and, hence, the requirement for animal feed, which entails high usage of maize. The global maize silage market is projected to grow at a compound annual growth rate of 7.84% from 2021 to 2030. Factors such as increasing demand for sustainable and environment-friendly food sources coupled with rising health awareness are fueling this growth. With the dairy sector growing at about 4%-5% and the increasing shortage faced for fodder, demand for silage maize is expected to increase worldwide. The progress in improved mechanization for the provision of silage maize, reduced labor demand, lack of moisture-related marketing issues as associated with grain maize, early vacancy of farms for next crops, and easy and economical form of feed to sustain household dairy sector make maize silage a profitable venture. However, sustaining the profitability of this enterprise requires the development of hybrids specific for silage production. Little attention has yet been paid to breeding for a plant ideotype for silage with specific consideration of traits such as dry matter yield, nutrient yield, energy in organic matter, genetic architecture of cell wall components determining their digestibility, stalk standability, maturity span, and losses during ensiling. This review explores the available information on the underlying genetic mechanisms and gene/gene families impacting silage yield and quality. The trade-offs between yield and nutritive value in relation to crop duration are also discussed. Based on available genetic information on inheritance and molecular aspects, breeding strategies are proposed to develop maize ideotypes for silage for the development of sustainable animal husbandry.

4.
J Cell Biochem ; 124(2): 294-307, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585945

RESUMEN

The arachidonic acid (AA) metabolic pathway, plays a vital role in the production of eicosanoids by the action of pro-inflammatory secretory phospholipase A2 (PLA2 ). Release of eicosanoids is known to be involved in many inflammatory diseases. Identification of the inhibitory molecules of this AA pathway enzyme along with the regulation of intracellular signaling cascades may be a finer choice to develop as a powerful anti-inflammatory drug. In this regard, we have screened few cell-permeable antioxidant molecules Tempo, Mito-TEMPO, N,N'-Bis(salicylideneamino)ethane-manganese(II) (EUK)-134, and EUK-8 against pro-inflammatory sPLA2 s. Among these, we found EUK-8 is a potent inhibitor with its IC50 value ranges 0.7-2.0 µM for sPLA2 s isolated from different sources. Furthermore, docking studies confirm the strong binding of EUK-8 towards sPLA2 . In vivo effect of EUK-8 was studied in HSF-sPLA2 -induced edema in mouse paw model. In addition to neutralizing the edema, EUK-8 significantly reduces the phosphorylation level of inflammatory proteins such as p38 member of MAPK pathway, Akt, and p65 along with the suppression of pro-inflammatory cytokine (interleukin-6) and chemokine (CXCL1) in edematous tissue. This shows that EUK-8 not only inhibits the sPLA2 activity, it also plays an important role in the regulation of sPLA2 -induced cell signaling cascades. Apart from the sPLA2 inhibition, we also examine the regulatory actions of EUK-8 with other downstream enzymes of AA pathway such as 5-LOX assay in human polymorphonuclear leukocytes (PMNs) and COX-2 expression in carrageenan-λ induced paw edema. Here EUK-8 significantly inhibits 5-LOX enzyme activity and downregulates COX-2 expression. These data indicate that EUK-8 found to be a promising multitargeted inhibitory molecule toward inflammatory pathway. In conclusion, mitochondrial targeted antioxidant EUK-8 is not only the powerful antioxidant, also a potent anti-inflammatory molecule and may be a choice of molecule for pharmacological applications.


Asunto(s)
Fosfolipasas A2 Secretoras , Ratones , Humanos , Animales , Fosfolipasas A2 Secretoras/efectos adversos , Fosfolipasas A2 Secretoras/metabolismo , Antioxidantes/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Antiinflamatorios/uso terapéutico , Edema/inducido químicamente
5.
Front Plant Sci ; 13: 984912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204050

RESUMEN

Crop yield varies considerably within agroecology depending on the genetic potential of crop cultivars and various edaphic and climatic variables. Understanding site-specific changes in crop yield and genotype × environment interaction are crucial and needs exceptional consideration in strategic breeding programs. Further, genotypic response to diverse agro-ecologies offers identification of strategic locations for evaluating traits of interest to strengthen and accelerate the national variety release program. In this study, multi-location field trial data have been used to investigate the impact of environmental conditions on crop phenological dynamics and their influence on the yield of mungbean in different agroecological regions of the Indian subcontinent. The present attempt is also intended to identify the strategic location(s) favoring higher yield and distinctiveness within mungbean genotypes. In the field trial, a total of 34 different mungbean genotypes were grown in 39 locations covering the north hill zone (n = 4), northeastern plain zone (n = 6), northwestern plain zone (n = 7), central zone (n = 11) and south zone (n = 11). The results revealed that the effect of the environment was prominent on both the phenological dynamics and productivity of the mungbean. Noticeable variations (expressed as coefficient of variation) were observed for the parameters of days to 50% flowering (13%), days to maturity (12%), reproductive period (21%), grain yield (33%), and 1000-grain weight (14%) across the environments. The genotype, environment, and genotype × environment accounted for 3.0, 54.2, and 29.7% of the total variation in mungbean yield, respectively (p < 0.001), suggesting an oversized significance of site-specific responses of the genotypes. Results demonstrated that a lower ambient temperature extended both flowering time and the crop period. Linear mixed model results revealed that the changes in phenological events (days to 50 % flowering, days to maturity, and reproductive period) with response to contrasting environments had no direct influence on crop yields (p > 0.05) for all the genotypes except PM 14-11. Results revealed that the south zone environment initiated early flowering and an extended reproductive period, thus sustaining yield with good seed size. While in low rainfall areas viz., Sriganganagar, New Delhi, Durgapura, and Sagar, the yield was comparatively low irrespective of genotypes. Correlation results and PCA indicated that rainfall during the crop season and relative humidity significantly and positively influenced grain yield. Hence, the present study suggests that the yield potential of mungbean is independent of crop phenological dynamics; rather, climatic variables like rainfall and relative humidity have considerable influence on yield. Further, HA-GGE biplot analysis identified Sagar, New Delhi, Sriganganagar, Durgapura, Warangal, Srinagar, Kanpur, and Mohanpur as the ideal testing environments, which demonstrated high efficiency in the selection of new genotypes with wider adaptability.

6.
Inflammopharmacology ; 30(5): 1853-1870, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35639234

RESUMEN

Eleusine coracana (L.) Gaertn (E. coracana) is one of the highest consuming food crops in Asia and Africa. E. coracana is a plant with several medicinal values including anti-ulcerative, anti-diabetic, anti-viral and anti-cancer properties. However, the anti-inflammatory property of E. coracana remains to be elucidated. Therefore, the objective of present study was to investigate the potential in isolated molecule from E. coracana via a combination of in vitro, in vivo and in silico methods. In this study, we have isolated, purified and characterized an anti-inflammatory molecule from E. coracana bran extract known as syringol. Purification of syringol was accomplished by combination of GC-MS and RP-HPLC techniques. Syringol significantly inhibited the enzymes activity of sPLA2 (IC50 = 3.00 µg) and 5-LOX (IC50 = 0.325 µg) in vitro. The inhibition is independent of substrate concentration, calcium ion concentration and was irreversible. Syringol interacts with purified sPLA2 enzymes as evidenced by fluorescence and molecular docking studies. Further, the syringol molecule dose dependently inhibited the development of sPLA2 and λ-carrageenan induced edema. Furthermore, syringol decreases the expression of cPLA2, COX-2, IκBα, p38 and MPO in edematous tissues as demonstrated by western blots. These studies revealed that syringol isolated from E. coracana bran may develop as a potent anti-inflammatory molecule.


Asunto(s)
Eleusine , Fosfolipasas A2 Secretoras , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Calcio/metabolismo , Carragenina/farmacología , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Edema/tratamiento farmacológico , Edema/metabolismo , Eleusine/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Inhibidor NF-kappaB alfa/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , Fosfolipasas A2 Secretoras/uso terapéutico , Extractos Vegetales/uso terapéutico , Pirogalol/análogos & derivados
7.
Front Plant Sci ; 12: 668020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630444

RESUMEN

With an objective of identifying the genomic regions for productivity and quality traits in peanut, a recombinant inbred line (RIL) population developed from an elite variety, TMV 2 and its ethyl methane sulfonate (EMS)-derived mutant was phenotyped over six seasons and genotyped with genotyping-by-sequencing (GBS), Arachis hypogaea transposable element (AhTE) and simple sequence repeats (SSR) markers. The genetic map with 700 markers spanning 2,438.1 cM was employed for quantitative trait loci (QTL) analysis which identified a total of 47 main-effect QTLs for the productivity and oil quality traits with the phenotypic variance explained (PVE) of 10-52% over the seasons. A common QTL region (46.7-50.1 cM) on Ah02 was identified for the multiple traits, such as a number of pods per plant (NPPP), pod weight per plant (PWPP), shelling percentage (SP), and test weight (TW). Similarly, a QTL (7.1-18.0 cM) on Ah16 was identified for both SP and protein content (PC). Epistatic QTL (epiQTL) analysis revealed intra- and inter-chromosomal interactions for the main-effect QTLs and other genomic regions governing these productivity traits. The markers identified by a single marker analysis (SMA) mapped to the QTL regions for most of the traits. Among the five potential candidate genes identified for PC, SP and oil quality, two genes (Arahy.7A57YA and Arahy.CH9B83) were affected by AhMITE1 transposition, and three genes (Arahy.J5SZ1I, Arahy.MZJT69, and Arahy.X7PJ8H) involved functional single nucleotide polymorphisms (SNPs). With major and consistent effects, the genomic regions, candidate genes, and the associated markers identified in this study would provide an opportunity for gene cloning and genomics-assisted breeding for increasing the productivity and enhancing the quality of peanut.

8.
Peptides ; 123: 170180, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31715212

RESUMEN

Angiotensin converting enzyme (ACE), neutral endopeptidase (NEP) and aminopeptidase N (APN) are responsible for generation of vasoactive peptides that regulates vasoconstriction, vasodilation and natriuresis, which altogether regulate blood pressure. Cumulative inhibition of ACE, NEP and APN effectively blocks the progression of respective pathways. In this study, N-methylated peptide inhibitors F-N(Me)H-L, V-N(Me)F-R and R-N(Me)V-Y were synthesized against ACE, NEP and APN respectively, using their respective physiological substrates. F-N(Me)H-L inhibited ACE activity with an IC50 of 83 nmol/L, V-N(Me)F-R inhibited NEP activity with an IC50 of 1.173 µmol/L and R-N(Me)V-Y inhibited APN activity with an IC50 of 3.94 nmol/L respectively. Further, the anti-hypertensive effect of N-methylated peptides was evaluated using rat model of dexamethasone-induced hypertension. Individual peptides and their cocktail treatment were started from day 6 of the study period and blood pressure was measured on every alternate day during 15 day study. Administration of F-N(Me)H-L (138 ± 3 mmHg) and cocktail of all the three peptides at a dose of 100 mg/kg significantly reduced systolic blood pressure (SBP) compared to dexamethasone group (SBP of Groups-dexamethasone; (167 ± 5 mmHg), F-N(Me)H-L (138 ± 3 mmHg), and Cocktail (122 ± 3 mmHg). Anti-hypertensive, anti-hypertrophic and anti-fibrotic effects of N-methylated peptides and cocktail was further reflected by the decreased levels of circulating Ang II and increased ANP levels in sera of hypertensive rats along with decrease in collagen deposition in heart and kidney. Though, ACE inhibition is adequate to reduce SBP, targeting NEP and APN along with ACE is beneficial in tackling hypertension and associated fibrosis of heart.


Asunto(s)
Antihipertensivos , Antígenos CD13 , Dexametasona/efectos adversos , Hipertensión , Inhibidores de la Metaloproteinasa de la Matriz , Neprilisina , Péptidos , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antihipertensivos/química , Antihipertensivos/farmacología , Antígenos CD13/antagonistas & inhibidores , Antígenos CD13/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/enzimología , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metilación , Neprilisina/antagonistas & inhibidores , Neprilisina/metabolismo , Péptidos/química , Ratas , Ratas Wistar
9.
Eur J Med Chem ; 187: 111969, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31865018

RESUMEN

Compounds inducing adiponectin production have therapeutic potential for metabolic diseases. During screening, heme oxygenase-1-inducing marliolide derivatives were identified as adiponectin-inducing compounds. Although some marliolide derivatives were directly bound to peroxisome proliferator-activated receptor γ (PPARγ), the adiponectin-inducing activity did not correlate with the PPARγ binding affinity. The most potent adiponectin inducing compound, (E,4S,5S)-3-butylidene-dihydro-4-hydroxy-5-methylfuran-2(3H)-one (1a), exhibited the weakest PPARγ binding activity. A docking simulation suggested that two 1a molecules can be present in two different sites within the PPARγ-ligand-binding pocket (LBP). Based on the docking model, novel linked butanolide dimer compounds were synthesized. A linked butanolide dimer compound, (3E,3'E,4S,4'S,5S,5'S)-3,3'-(decane-1,10-diylidene)bis(4-hydroxy-5-methyldihydrofuran-2(3H)-one) (3a), promoted adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs) as a novel PPARγ full agonist (EC50, 4.34 µM). This linked butanolide dimer study provides novel insight into PPARγ biology, suggesting that small molecules can form multiple ligand interactions within the PPARγ-LBP and thereby affect the functional outcomes of PPARγ activation.


Asunto(s)
4-Butirolactona/farmacología , Adipogénesis/efectos de los fármacos , Adiponectina/biosíntesis , Células Madre Mesenquimatosas/efectos de los fármacos , PPAR gamma/agonistas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Células Cultivadas , Dimerización , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Mesenquimatosas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , PPAR gamma/metabolismo , Relación Estructura-Actividad
10.
J Genet ; 98(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31204698

RESUMEN

Finger millet (Eleusine coracana (L.) Gaertn.), an important C4 species is known for its stress hardiness and nutritional significance. To identify novel drought responsive mechanisms, we generated transcriptome data from leaf tissue of finger millet, variety GPU-28, exposed to gravimetrically imposed drought stress so as to simulate field stress conditions. De novo assembly based approach yielded 80,777 and 90,830 transcripts from well-irrigated (control) and drought-stressed samples, respectively. A total of 1790 transcripts were differentially expressed between the control and drought-stress treatments. Functional annotation and pathway analysis indicated activation of diverse drought-stress signalling cascade genes such as serine threonine protein phosphatase 2A (PP2A), calcineurin B-like interacting protein kinase31 (CIPK31), farnesyl pyrophosphate synthase (FPS), signal recognition particle receptor α (SRPR α) etc. The basal regulatory genes such as TATA-binding protein (TBP)-associated factors (TAFs) werefound to be drought responsive, indicating that genes associated with housekeeping or basal regulatory processes are activated underdrought in finger millet. A significant portion of the expressed genes was uncharacterized, belonging to the category of proteins of unknown functions (PUFs). Among the differentially expressed PUFs, we attempted to assign putative function for a few, using anovel annotation tool, Proteins of Unknown Function Annotation Server. Analysis of PUFs led to the discovery of novel drought responsive genes such as pentatricopeptide repeat proteins and tetratricopeptide repeat proteins that serve as interaction modules in multiprotein interactions. The transcriptome data generated can be utilized for comparative analysis, and functional validation of the genes identified would be useful to understand the drought adaptive mechanisms operating under field conditions in finger millet, as has been already attempted for a few candidates such as CIPK31 and TAF6. Such an attempt is needed to enhance the productivity of finger millet under water-limited conditions, and/or to adopt the implicated mechanisms in other related crops.


Asunto(s)
Adaptación Biológica/genética , Sequías , Eleusine/genética , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Transcriptoma , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Anotación de Secuencia Molecular
11.
J Cell Biochem ; 120(8): 12843-12858, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30861186

RESUMEN

Hemostasis is a tightly regulated process which maintains a fluid state of blood within the vasculature and provides thrombotic response upon tissue injury. Various scientific studies have implicated the role of plant latex proteases in hemostasis using in vitro experiments. However, in vivo models substantiate their role in hemostasis. Therefore, in the present study, the effect of plant latex thrombin-like proteases (PTLPs) on hemostasis was investigated systematically using mice tail bleeding as a preclinical model. In this direction, latex protease fractions (LPFs), which showed potent thrombin-like activity, were selected as they act directly on fibrinogen to form clot and quickly stop bleeding. Thrombin-like activity was exhibited mainly by cysteine proteases. Calotropis gigantea, Carica papaya, Jatropha curcas, Oxystelma esculentum, Tabernaemontana divaricata, and Vallaris solanacea LPFs and papain from C. papaya latex significantly reduced bleeding on a topical application in normal and aspirin administered mice. In addition, PTLPs accelerated the clotting of factor VIII deficient plasma, while, papain brought back the clotting time to normal levels acting like a bypassing agent. Further, papain failed to show activity in the presence of specific cysteine protease inhibitor iodoacetic acid; confirming protease role in all the activities exhibited. At the tested dose, PTLPs except C. gigantea did not show toxicity. Further, structural and sequence comparison between PTLPs and human thrombin revealed structural and sequence dissimilarity indicating their unique nature. The findings of the present study may open up a new avenue for considering PTLPs including papain in the treatment of bleeding wounds.


Asunto(s)
Aspirina/efectos adversos , Cisteína Endopeptidasas/administración & dosificación , Factor VIII/metabolismo , Hemorragia/tratamiento farmacológico , Látex/química , Animales , Asclepias/química , Calotropis/química , Carica , Cisteína Endopeptidasas/farmacología , Modelos Animales de Enfermedad , Hemorragia/inducido químicamente , Hemorragia/metabolismo , Homeostasis , Humanos , Jatropha/química , Ratones , Papaína/administración & dosificación , Papaína/farmacología , Proteínas de Plantas/administración & dosificación , Proteínas de Plantas/farmacología , Tabernaemontana/química
12.
J Gen Mol Virol ; 9(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33381355

RESUMEN

Maize lethal necrosis (MLN) disease is new to Africa. First report was in Kenya in 2012, since then the disease has rapidly spread to most parts of eastern and central Africa region including Tanzania, Burundi, DRC Congo, Rwanda, Uganda, Ethiopia and similar symptoms were observed in South Sudan. Elsewhere, the disease was caused by infection of Maize Chlorotic Mottle Virus (MCMV) in combination with any of the potyviruses namely; maize dwarf mosaic virus (MDMV), sugarcane mosaic virus (SCMV) and tritimovirus wheat streak mosaic virus (WSMV). In Africa, the disease occurs due to combined infections of maize by MCMV and SCMV, leading to severe yield losses. Efforts to address the disease spread have been ongoing. Serological techniques including enzyme-linked immuno-sorbent assay (ELISA), polymerase chain reaction (PCR), genome-wide association (GWAS) mapping and next generation sequencing have been effectively used to detect and characterize MLN causative pathogens. Various management strategies have been adapted to control MLN including use of resistant varieties, phytosanitary measures and better cultural practices. This review looks at the current knowledge on MLN causative viruses, genetic architecture and molecular basis underlying their synergistic interactions. Lastly, some research gaps towards MLN management will be identified. The information gathered may be useful for developing strategies towards future MLN management and maize improvement in Africa.

13.
PLoS One ; 12(10): e0186113, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29040293

RESUMEN

A mapping population of recombinant inbred lines (RILs) derived from TMV 2 and its mutant, TMV 2-NLM was employed for mapping important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut. Single nucleotide polymorphism and copy number variation using RAD-Sequencing data indicated very limited polymorphism between TMV 2 and TMV 2-NLM. But phenotypically they differed significantly for many taxonomic and productivity traits. Also, the RIL population showed significant variation for a few additional agronomic traits. A genetic linkage map of 1,205.66 cM was constructed using 91 genic and non-genic Arachis hypogaea transposable element (AhTE) markers. Using single marker analysis and QTL analysis, the markers with high phenotypic variance explained (PVE) were identified for branching pattern (32.3%), number of primary and secondary branches (19.9% and 28.4%, respectively), protein content (26.4%), days to 50% flowering (22.0%), content of oleic acid (15.1%), test weight (13.6%) and pod width (12.0%). Three genic markers (AhTE0357, AhTE0391, AhTE0025) with Arachis hypogaea miniature inverted-repeat transposable element (AhMITE1) activity in the genes Araip.TG1BL (B02 chromosome), Aradu.7N61X (A09 chromosome) and Aradu.7065G (A07 chromosome), respectively showed strong linkage with these taxonomic, productivity and quality traits. Since TMV 2 and TMV 2-NLM differed subtly at DNA level, the background noise in detecting the marker-trait associations was minimum; therefore, the markers identified in this study for the taxonomic and productivity traits may be significant and useful in peanut molecular breeding.


Asunto(s)
Arachis/genética , Elementos Transponibles de ADN/genética , Marcadores Genéticos/genética , Sitios de Carácter Cuantitativo/genética , Arachis/crecimiento & desarrollo , Cruzamiento , Mapeo Cromosómico , Clasificación , Ligamiento Genético , Genoma de Planta , Fenotipo , Polimorfismo de Nucleótido Simple/genética
14.
Indian J Nephrol ; 27(5): 402-405, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28904440

RESUMEN

Primary hyperoxaluria (PH) Type 1 is a rare, genetic disorder caused by deficiency of the liver enzyme alanine-glyoxylate aminotransferase, which is encoded by AGXT gene. We report a 2-year-old South Indian Tamil child with nephrocalcinosis due to PH Type 1, in whom a homozygous genotype for two missense mutations in the AGXT gene was found: first, a C to G transversion (c. 32C>G) in exon 1 resulting in the amino acid substitution p.Pro11Arg; second, a T to A transversion (c. 167T>A) in exon 2 resulting in p.Ile56Asn. A therapy based on potassium citrate and pyridoxine was started. This is the first report of molecular testing-proven childhood onset-PH Type 1 from South India and is notable for the co-occurrence of two missense mutations in one AGXT allele, which might lead to different and more severe phenotype than each mutation alone. To the best of our knowledge, AGXT allele carrying two already known mutations has not been previously reported.

15.
Physiol Mol Biol Plants ; 23(3): 663-673, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28878504

RESUMEN

Foxtail millet [Setaria italica (L.) P. Beauv.] is an important small millet, grown as a short duration, drought tolerant crop across the world. This crop can be grown on wide ranges of soil conditions and has an immense potential for food and fodder in rainfed and arid regions of the India. In the present study, 31 primer pairs (27 SSR and 4 EST-SSR) were used to analyse the genetic diversity in 223 core collection accessions. Analysis resulted in detection of a total of 136 alleles with an average of 4.38 alleles per locus. Among these 136 alleles, 22 were rare, 70 were common and 44 were frequent. The PIC value ranged from 0.01 to 0.86 with an average of 0.31. The average number of observed alleles ranged from 2.0 (northern hills of India accessions) to 4.06 (exotic) with an average of 2.72. The mean Shannon's Information Index ranged from 0.44 (northern hills of India) to 0.69 (exotic) with an average of 0.52. Pair-wise Fst values indicated little to moderate genetic differentiation among the group of accessions. UPGMA clustering grouped the accessions into two major groups while analysis for population substructure indicated presence of four subpopulations. However there was no statistically well supported grouping of the accessions based on eco-geographic specificities. The core collection designated here represented substantial genetic diversity at molecular level, hence may be a good source of diversity for use in foxtail improvement programs in the region.

16.
Adv Food Nutr Res ; 78: 115-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27452168

RESUMEN

l-Asparaginase, an enzyme that catalyzes l-asparagine into aspartic acid and ammonia, has relevant applications in the pharmaceutical and food industry. So, this enzyme is used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. This enzyme is also able to reduce the amount of acrylamide found in carbohydrate-rich fried and baked foods which is carcinogenic to humans. The concentration of acrylamide in food can be reduced by deamination of asparagine using l-Asparaginase. l-Asparaginase is present in plants, animals, and microbes. Various microorganisms such as bacteria, yeast, and fungi are generally used for the production of l-Asparaginase as it is difficult to obtain the same from plants and animals. l-Asparaginase from bacteria causes anaphylaxis and other abnormal sensitive reactions. To overcome this, eukaryotic organisms such as fungi can be used for the production of l-Asparaginase. l-Asparaginase can be produced either by solid-state fermentation (SSF) or by submerged fermentation (SmF). SSF is preferred over SmF as it is cost effective, eco-friendly and it delivers high yield of enzyme. SSF process utilizes agricultural and industrial wastes as solid substrate. The contamination level is substantially reduced in SSF through low moisture content. Current chapter will discuss in detail the chemistry and applications of l-Asparaginase enzyme and various methods available for the production of the enzyme, especially focusing on the advantages and limitations of SSF and SmF processes.


Asunto(s)
Asparaginasa/biosíntesis , Fermentación , Actinobacteria/enzimología , Asparaginasa/química , Asparaginasa/metabolismo , Bacterias/enzimología , Enzimas Inmovilizadas , Manipulación de Alimentos/métodos , Hongos/enzimología
18.
J Clin Diagn Res ; 8(10): PC04-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25478419

RESUMEN

INTRODUCTION: Bronchial Asthma is a common chronic inflammatory disorder of the airways in childhood. Vitamin-D, required for bone mineralization, is also a potent immune system regulator having a potential role in various allergic diseases. This study was undertaken to determine the difference in serum levels of Vitamin-D in asthmatic children and to determine the association between vitamin-D and asthma in children. MATERIALS AND METHODS: This cross-sectional study included 88 (44 asthmatic children and 44 healthy controls) children aged between 5 and 13 y. Serum 25-hydroxy vitamin-D levels were determined and compared between the two groups. The association between vitamin-D levels and lung function was studied in the asthmatic children. RESULTS: Serum vitamin-D level was significantly lower in asthmatic children than in control group and in the asthmatic group, vitamin-D levels had a significant positive correlation with FEV1% and FEV1/FVC%. CONCLUSION: Vitamin-D deficiency is highly prevalent in asthmatic children and is associated with airway limitation.

19.
PLoS One ; 9(8): e105228, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25140620

RESUMEN

Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the 'reference set' of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15-20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (p value > 2.1 × 10-6) with wide phenotypic variance (PV) range (5.81-90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components.


Asunto(s)
Arachis/genética , Estudio de Asociación del Genoma Completo/normas , Análisis por Conglomerados , Productos Agrícolas/genética , Genes de Plantas , Mejoramiento Genético , Genotipo , Hibridación Genética , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Estándares de Referencia , Clima Tropical
20.
Theor Appl Genet ; 127(8): 1771-81, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24927821

RESUMEN

KEY MESSAGE: Successful introgression of a major QTL for rust resistance, through marker-assisted backcrossing, in three popular Indian peanut cultivars generated several promising introgression lines with enhanced rust resistance and higher yield. Leaf rust, caused by Puccinia arachidis Speg, is one of the major devastating diseases in peanut (Arachis hypogaea L.). One QTL region on linkage group AhXV explaining upto 82.62 % phenotypic variation for rust resistance was validated and introgressed from cultivar 'GPBD 4' into three rust susceptible varieties ('ICGV 91114', 'JL 24' and 'TAG 24') through marker-assisted backcrossing (MABC). The MABC approach employed a total of four markers including one dominant (IPAHM103) and three co-dominant (GM2079, GM1536, GM2301) markers present in the QTL region. After 2-3 backcrosses and selfing, 200 introgression lines (ILs) were developed from all the three crosses. Field evaluation identified 81 ILs with improved rust resistance. Those ILs had significantly increased pod yields (56-96 %) in infested environments compared to the susceptible parents. Screening of selected 43 promising ILs with 13 markers present on linkage group AhXV showed introgression of the target QTL region from the resistant parent in 11 ILs. Multi-location field evaluation of these ILs should lead to the release of improved varieties. The linked markers may be used in improving rust resistance in peanut breeding programmes.


Asunto(s)
Arachis/genética , Arachis/inmunología , Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Endogamia , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Arachis/microbiología , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta/genética , Genotipo , Enfermedades de las Plantas/genética , Autofecundación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA