Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374957

RESUMEN

Plants often experience unfavorable conditions during their life cycle that impact their growth and sometimes their survival. A temporary phase of such stress, which can result from heavy metals, drought, salinity, or extremes of temperature or pH, can cause mild to enormous damage to the plant depending on its duration and intensity. Besides environmental stress, plants are the target of many microbial pathogens, causing diseases of varying severity. In plants that harbor mutualistic bacteria, stress can affect the symbiotic interaction and its outcome. To achieve the full potential of a symbiotic relationship between the host and rhizobia, it is important that the host plant maintains good growth characteristics and stay healthy under challenging environmental conditions. The host plant cannot provide good accommodation for the symbiont if it is infested with diseases and prone to other predators. Because the bacterium relies on metabolites for survival and multiplication, it is in its best interests to keep the host plant as stress-free as possible and to keep the supply stable. Although plants have developed many mitigation strategies to cope with stress, the symbiotic bacterium has developed the capability to augment the plant's defense mechanisms against environmental stress. They also provide the host with protection against certain diseases. The protective features of rhizobial-host interaction along with nitrogen fixation appear to have played a significant role in legume diversification. When considering a legume-rhizobial symbiosis, extra benefits to the host are sometimes overlooked in favor of the symbionts' nitrogen fixation efficiency. This review examines all of those additional considerations of a symbiotic interaction that enable the host to withstand a wide range of stresses, enabling plant survival under hostile regimes. In addition, the review focuses on the rhizosphere microbiome, which has emerged as a strong pillar of evolutionary reserve to equip the symbiotic interaction in the interests of both the rhizobia and host. The evaluation would draw the researchers' attention to the symbiotic relationship as being advantageous to the host plant as a whole and the role it plays in the plant's adaptation to unfavorable environmental conditions.

2.
Front Microbiol ; 12: 669404, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177848

RESUMEN

Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen (N) in sharp contrast to cereal crops that require an external input by N-fertilizers. Since the latter process in cereal crops results in a huge quantity of greenhouse gas emission, the legume production systems are considered efficient and important for sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving SNF efficiency in legumes did not become a breeder's priority. The size and stability of heritable effects under different environment conditions weigh significantly on any trait useful in breeding strategies. Here we review the challenges and progress made toward decoding the heritable components of SNF, which is considerably more complex than other crop allelic traits since the process involves genetic elements of both the host and the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the genetics of the host and its symbiotic partner face the test of a unique microbiome for its success and productivity. The progress made thus far in commercial legume crops with relevance to the dynamics of host-rhizobia interaction, environmental impact on rhizobial performance challenges, and what collectively determines the SNF efficiency under field conditions are also reviewed here.

3.
Microorganisms ; 9(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430332

RESUMEN

The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the "green revolution". Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.

4.
Plants (Basel) ; 9(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291784

RESUMEN

Ripening of tomato fruit leads, in general, to a sequential decrease in the endogenous levels of polyamines spermidine (SPD) and spermine (SPM), while the trend for the diamine putrescine (PUT) levels is generally an initial decrease, followed by a substantial increase, and thereafter reaching high levels at the red ripe fruit stage. However, genetic engineering fruit-specific expression of heterologous yeast S-adenosylmethionine (SAM) decarboxylase in tomato has been found to result in a high accumulation of SPD and SPM at the cost of PUT. This system enabled a genetic approach to determine the impact of increased endogenous levels of biogenic amines SPD and SPM in tomato (579HO transgenic line) and on the biogenesis, transcription, processing, and stability of ribosomal RNA (rRNA) genes in tomato fruit as compared with the non-transgenic 556AZ line. One major biogenetic process regulating transcription and processing of pre-mRNA complexes in the nucleus involves small nucleolar RNAs (snoRNAs). To determine the effect of high levels of SPD and SPM on these latter processes, we cloned, sequenced, and identified a box C/D snoRNA cluster in tomato, namely, SlSnoR12, SlU24a, Slz44a, and Slz132b. Similar to this snoRNA cluster housed on chromosome (Chr.) 6, two other noncoding C/D box genes, SlsnoR12.2 and SlU24b, with a 94% identity to those on Chr. 6 were found located on Chr. 3. We also found that other snoRNAs divisible into snoRNA subclusters A and B, separated by a uridine rich spacer, were decorated with other C/D box snoRNAs, namely, J10.3, Z131a/b, J10.1, and Z44a, followed by z132a, J11.3, z132b, U24, Z20, U24a, and J11. Several of these, for example, SlZ44a, Slz132b, and SlU24a share conserved sequences similar to those in Arabidopsis and rice. RNAseq analysis of high SPD/SPM transgenic tomatoes (579HO line) showed significant enrichment of RNA polymerases, ribosomal, and translational protein genes at the breaker+8 ripening stage as compared with the 556AZ control. Thus, these results indicate that SPD/SPM regulates snoRNA and rRNA expression directly or indirectly, in turn, affecting protein synthesis, metabolism, and other cellular activities in a positive manner.

6.
Nat Biomed Eng ; 3(11): 917-929, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686001

RESUMEN

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with cytotoxic payloads. However, the present strategies for the synthesis of ADCs either yield unstable or heterogeneous products or involve complex processes. Here, we report a computational approach that leverages molecular docking and molecular dynamics simulations to design ADCs that self-assemble through the non-covalent binding of the antibody to a payload that we designed to act as an affinity ligand for specific conserved amino acid residues in the antibody. This method does not require modifications to the antibody structure and yields homogenous ADCs that form in less than 8 min. We show that two conjugates, which consist of hydrophilic and hydrophobic payloads conjugated to two different antibodies, retain the structure and binding properties of the antibody and its biological specificity, are stable in plasma and improve anti-tumour efficacy in mice with non-small cell lung tumour xenografts. The relative simplicity of the approach may facilitate the production of ADCs for the targeted delivery of cytotoxic payloads.


Asunto(s)
Anticuerpos/química , Citotoxinas/química , Diseño de Fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Animales , Especificidad de Anticuerpos , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Fenómenos Químicos , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Ratones , Ratones Desnudos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/tratamiento farmacológico , Ingeniería de Proteínas , Especificidad por Sustrato , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Chem Commun (Camb) ; 55(12): 1718-1721, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30623966

RESUMEN

Diaminocyclohexane-Pt(ii)-phenalenyl complexes (1 and 2) showed an appropriate balance between efficacy and toxicity. Compound 2 showed nearly two-fold higher tumour growth inhibition than oxaliplatin in a murine NSCLC tumour model, when a combined drug development approach was used. The fluorescent properties of phenalenone were utilized to understand the mechanistic details of the drug.


Asunto(s)
Antineoplásicos/química , Diseño de Fármacos , Platino (Metal)/química , Profármacos/química , Células A549 , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Cristalografía por Rayos X , Humanos , Ligandos , Liposomas/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Conformación Molecular , Profármacos/farmacología , Profármacos/uso terapéutico , Trasplante Heterólogo
8.
Phytopathology ; 109(5): 796-803, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30540553

RESUMEN

Plant signaling hormones such as ethylene have been shown to affect the host response to various pathogens. Often, the resistance responses to necrotrophic fungi are mediated through synergistic interactions of ethylene (ET) with the jasmonate signaling pathway. On the other hand, ET is also an inducer of senescence and cell death, which could be beneficial for some invading necrotrophic pathogens. Fusarium graminearum, a causative agent in Fusarium head blight of wheat, is a hemibiotrophic pathogen, meaning it has both biotrophic and necrotrophic phases during the course of infection. However, the role of ET signaling in the host response to Fusarium spp. is unclear; some studies indicate that ET mediates resistance, while others have shown that it is associated with susceptibility. These discrepancies could be related to various aspects of different experimental designs, and suggest that the role of ET signaling in the host response to FHB is potentially dependent on interactions with some undetermined factors. To investigate whether wheat genotype can influence the ET-mediated response to FHB, the effect of chemical treatments affecting the ET pathway was studied in six wheat genotypes in detached-head assays. ET-inhibitor treatments broke down resistance to both initial infection and disease spread in three resistant wheat genotypes, whereas ET-enhancer treatments resulted in reduced susceptibility in three susceptible genotypes. The results presented here show that the ET signaling can mediate FHB resistance to F. graminearum in different wheat backgrounds.


Asunto(s)
Etilenos/metabolismo , Fusarium/patogenicidad , Enfermedades de las Plantas/prevención & control , Transducción de Señal , Triticum/efectos de los fármacos , Resistencia a la Enfermedad , Etilenos/antagonistas & inhibidores , Regulación de la Expresión Génica de las Plantas , Genotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas , Triticum/metabolismo , Triticum/microbiología
9.
BMC Genomics ; 19(1): 178, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506469

RESUMEN

BACKGROUND: The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. RESULTS: The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. CONCLUSIONS: A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Lolium/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Triticum/genética , Secuencia de Aminoácidos , Biología Computacional , Bases de Datos Factuales , Genoma de Planta , Hordeum/metabolismo , Lolium/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Familia de Multigenes , Filogenia , Alineación de Secuencia , Triticum/metabolismo
10.
Chem Sci ; 8(3): 2387-2395, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451344

RESUMEN

Despite the advances in the design of antibody-drug conjugates (ADCs), the search is still ongoing for novel approaches that lead to increased stability and homogeneity of the ADCs. We report, for the first time, an ADC platform technology using a platinum(ii)-based linker that can re-bridge the inter-chain cysteines in the antibody, post-reduction. The strong platinum-sulfur interaction improves the stability of the ADC when compared with a standard maleimide-linked ADC thereby reducing the linker-drug exchange with albumin significantly. Moreover, due to the precise conserved locations of cysteines, both homogeneity and site-specificity are simultaneously achieved. Additionally, we demonstrate that our ADCs exhibit increased anticancer efficacy in vitro and in vivo. The Pt-based ADCs can emerge as a simple and exciting proposition to address the limitations of the current ADC linker technologies.

11.
Front Plant Sci ; 7: 901, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446131

RESUMEN

Plants execute an array of mechanisms in response to stress which include upregulation of defense-related proteins and changes in specific metabolites. Polyamines - putrescine (Put), spermidine (Spd), and spermine (Spm) - are metabolites commonly found associated with abiotic stresses such as chilling stress. We have generated two transgenic tomato lines (556HO and 579HO) that express yeast S-adenosylmethionine decarboxylase and specifically accumulate Spd and Spm in fruits in comparison to fruits from control (556AZ) plants (Mehta et al., 2002). Tomato fruits undergo chilling injury at temperatures below 13°C. The high Spd and Spm tomato together with the control azygous line were utilized to address role(s) of polyamines in chilling-injury signaling. Exposure to chilling temperature (2°C) led to several-fold increase in the Put content in all the lines. Upon re-warming of the fruits at 20°C, the levels of Spd and Spm increased further in the fruit of the two transgenic lines, the higher levels remaining stable for 15 days after re-warming as compared to the fruit from the control line. Profiling their steady state proteins before and after re-warming highlighted a protein of ∼14 kD. Using proteomics approach, protein sequencing and immunoblotting, the ∼14-kD protein was identified as the pathogenesis related protein 1b1 (PR1b1). The PR1b1 protein accumulated transiently in the control fruit whose level was barely detectable at d 15 post-warming while in the fruit from both the 556HO and 579HO transgenic lines PR1b1 abundance increased and remained stable till d 15 post warming. PR1b1 gene transcripts were found low in the control fruit with a visible accumulation only on d 15 post warming; however, in both the transgenic lines it accumulated and increased soon after rewarming being several-fold higher on day 2 while in 556HO line this increase continued until d 6 than the control fruit. The chilling-induced increase in PR1b1 protein seems independent of ethylene and methyl jasmonate signaling but may be linked to salicylic acid. We propose that polyamine-mediated sustained accumulation of PR1b1 protein in post-warmed chilled tomato fruit is a pre-emptive cold stress response and possibly a defense response mechanism related to Cold Stress-Induced Disease Resistance (SIDR) phenomenon.

12.
Plant Sci ; 228: 135-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25438794

RESUMEN

Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/fisiología , Inmunidad Innata , Desarrollo de la Planta , Inmunidad de la Planta , Interacciones Huésped-Patógeno , Estrés Fisiológico
13.
Indian J Pediatr ; 81(2): 189-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23564516

RESUMEN

Henoch-Schönlein purpura (HSP) is an acute small vessel leucocytoclastic vasculitis. It is the commonest vasculitis in children, with an incidence of about 10 cases per 100, 000 a year. Gastrointestinal manifestations are commonly encountered, however hematemesis and gastric outlet obstruction are rarely reported. The authors present the case of a 5-y-old boy having hematemesis, gastric outlet obstruction and multiple duodenal ulcers. He improved with steroids and conservative management.


Asunto(s)
Úlcera Duodenal/etiología , Obstrucción de la Salida Gástrica/etiología , Hematemesis/etiología , Vasculitis por IgA/complicaciones , Vasculitis por IgA/diagnóstico , Preescolar , Colonoscopía , Úlcera Duodenal/patología , Duodeno/patología , Endoscopía Gastrointestinal , Glucocorticoides/administración & dosificación , Humanos , Masculino , Prednisolona/administración & dosificación
14.
Amino Acids ; 46(3): 729-42, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24337930

RESUMEN

S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in plants has not yet been characterized. We used radiolabeled (14)C-Arg, (14)C-Orn, L-[U-(14)C]Met, (14)C-SAM and (14)C-Put to quantify flux through these pathways in tomato fruit and evaluate the effects of perturbing these pathways via transgenic expression of a yeast SAM decarboxylase (ySAMDC) gene using the fruit ripening-specific promoter E8. We show that polyamines in tomato fruit are synthesized both from Arg and Orn; however, the relative contribution of Orn pathway declines in the later stages of ripening. Expression of ySAMDC reversed the ripening associated decline in spermidine (Spd) and spermine (Spm) levels observed in the azygous control fruit. About 2- to 3-fold higher levels of labeled-Spd in transgenic fruit (556HO and 579HO lines) expressing ySAMDC confirmed the enzymatic function of the introduced gene. The incorporation of L-[U-(14)C]Met into Spd, Spm, ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) was used to determine Met-flux into these metabolites. The incorporation of (14)C-Met into Spd/Spm declined during ripening of the control azygous fruit but this was reversed in fruits expressing ySAMDC. However, incorporation of (14)C-Met into ethylene or ACC during ripening was not altered by the expression of ySAMDC in the fruit. Taken together these results show that: (1) There is an inverse relationship between the production of higher polyamines and ethylene during fruit ripening, (2) the inverse relationship between higher polyamines and ethylene is modulated by ySAMDC expression in that the decline in Spd/Spm during fruit ripening can be reversed without significantly altering ethylene biosynthesis, and (3) cellular flux of SAM in plants is homeostatically regulated based on its demand for competing pathways.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Frutas/metabolismo , Poliaminas/metabolismo , Solanum lycopersicum/metabolismo , Staphylococcus aureus/enzimología , Ingeniería de Tejidos , Adenosilmetionina Descarboxilasa/genética , Etilenos/metabolismo , Frutas/química , Solanum lycopersicum/química , Staphylococcus aureus/metabolismo
15.
PLoS One ; 8(10): e77505, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147012

RESUMEN

Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Expresión Génica , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Envejecimiento/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Flores/genética , Flores/crecimiento & desarrollo , Fusarium , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Oxilipinas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
17.
Planta ; 235(3): 453-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21947620

RESUMEN

Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.


Asunto(s)
Cromosomas de las Plantas/genética , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Plantas/genética , ARN Nucleolar Pequeño/genética , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/clasificación , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Reacción en Cadena de la Polimerasa , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/clasificación , Homología de Secuencia de Aminoácido
18.
Amino Acids ; 42(2-3): 843-56, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21814797

RESUMEN

Exogenous treatment with jasmonates (JA) has been shown to reduce the levels of polyamines in many plants. But the role of endogenous JA on polyamine biosynthesis or other cellular metabolites has thus far remained uninvestigated. We developed transgenic tomato (Solanum lycopersicum L.) having severely reduced methyl JA levels by silencing a fruit ripening-associated lipoxygenase (LOX), SlLoxB, using a truncated LOX gene under the control of the constitutive CaMV35S promoter. The LOX suppressed and MeJA-deficient fruits had lowered polyamine levels. Thus, these transgenic fruits were used as a plant model to evaluate the effects of reduced endogenous MeJA on cellular metabolites in ripening tomato fruits using NMR spectroscopy. During on-shelf ripening, transgenic fruits were significantly reduced in the content of 19 out of 30 metabolites examined, including Ile, Val, Ala, Thr, Asn Tyr, Glu, Gln, His, Phe, Trp, GABA, citrate, succinate, myo-inositol, unidentified compound B, nucleic acid compound Nucl1, choline, and trigonelline as compared to the wild-type azygous counterparts. A significant increase in ß-glucose levels in transgenic fruits was observed at the pink stage. The transgenic fruits were equivalent to the wild type in lycopene level and chlorophyll degradation rates. Taken together, these results show that intracellular MeJA significantly regulates overall primary metabolism, especially aminome (amino acids and polyamines) of ripening fruits.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Solanum lycopersicum/metabolismo , Northern Blotting , Electroforesis en Gel de Poliacrilamida , Resonancia Magnética Nuclear Biomolecular , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
19.
J Exp Bot ; 59(9): 2337-46, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18469323

RESUMEN

Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotypexmulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Poliaminas/metabolismo , Suelo/análisis , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Frutas/química , Frutas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genotipo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/genética , Fenotipo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Transcripción Genética , Vicia/química , Levaduras/enzimología
20.
J AOAC Int ; 90(5): 1456-64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17955994

RESUMEN

Vegetables and fruits are essential components of the human diet as they are sources of vitamins, minerals, and fiber and provide antioxidants that prevent chronic diseases. Our goal is to improve durable nutritional quality of tomato fruit. We developed transgenic tomatoes expressing yeast S-adenosylmethionine decarboxylase (ySAMdc) gene driven by a fruit-specific E8 promoter to investigate the role of polyamines in fruit metabolism. Stable integration of E8-ySAMdc chimeric gene in tomato genome led to ripening-specific accumulation of polyamines, spermidine (Spd) and spermine (Spm), which in turn affected higher accumulation of glutamine, asparagine, and organic acids in the red fruit with significant decrease in the contents of valine, aspartate, sucrose, and glucose. The metabolite profiling analysis suggests that Spd/Spm are perceived as "signaling" organic-N metabolites by the fruit cells, resulting in the stimulation of carbon sequestration; enhanced synthesis of biomolecules; increased acid to sugar ratio, a good attribute for the fruit flavor; and in the accumulation of another "vital amine," choline, which is an essential micronutrient for brain development. A limited transcriptome analysis of the transgenic fruit that accumulate higher polyamines revealed a large number of differentially expressed genes, about 55% of which represented discrete functional categories, and the remaining 45% were novel, unknown, or unclassified: amino acid biosynthesis, carotenoid biosynthesis, cell wall metabolism, chaperone family, flavonoid biosynthesis, fruit ripening, isoprenoid biosynthesis, polyamine biosynthesis, signal transduction, stress/defense-related, transcription, translation, and vacuolar function. There was a good correspondence between some gene transcripts and their protein products, but not in the case of the tonoplast intrinsic protein, which showed post-transcriptional regulation. Higher metabolic activity of the transgenic fruit is reflected in higher respiratory activity, and upregulation of chaperones and mitochondrial cytochrome oxidase transcripts compared to the control. These transgenic plants are a new resource to understand the role of Spd/Spm in fruit biology. Transcriptome analysis and metabolic profiles of Spd/Spm accumulating, transgenic fruit suggest the presence of an intricate regulation and interconnection between certain metabolic pathways that are revived when Spd and Spm likely reach a certain threshold. Thus, polyamines act as antiapoptotic regulatory molecules and are able to revive metabolic memory in the tomato fruit.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Técnicas Genéticas , Plantas Modificadas Genéticamente/genética , Poliaminas/química , Poliaminas/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , Genes de Plantas , Genoma de Planta , Modelos Biológicos , Ciencias de la Nutrición , Reguladores del Crecimiento de las Plantas/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...