Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(14): 17461-17473, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556803

RESUMEN

The phosphate lithium-ion conductor Li1.5Al0.5Ti1.5(PO4)3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li2WO4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm-3 and 180 Wh kg-1, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.

2.
Nat Commun ; 14(1): 6375, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821444

RESUMEN

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.


Asunto(s)
Biodiversidad , Pradera , Biomasa , Eutrofización , Estaciones del Año , Ecosistema
3.
Science ; 382(6668): 320-324, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37856588

RESUMEN

Once every 13 or 17 years within eastern North American deciduous forests, billions of periodical cicadas concurrently emerge from the soil and briefly satiate a diverse array of naive consumers, offering a rare opportunity to assess the cascading impacts of an ecosystem-wide resource pulse on a complex food web. We quantified the effects of the 2021 Brood X emergence and report that more than 80 bird species opportunistically switched their foraging to include cicadas, releasing herbivorous insects from predation and essentially doubling both caterpillar densities and accumulated herbivory levels on host oak trees. These short-lived but massive emergence events help us to understand how resource pulses can rewire interaction webs and disrupt energy flows in ecosystems, with potentially long-lasting effects.


Asunto(s)
Aves , Cadena Alimentaria , Hemípteros , Herbivoria , Animales , Hemípteros/fisiología , Periodicidad , Quercus
4.
Ann Bot ; 132(1): 107-120, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37389585

RESUMEN

BACKGROUND AND AIMS: How well plants reproduce near their geographic range edge can determine whether distributions will shift in response to changing climate. Reproduction at the range edge can be limiting if pollinator scarcity leads to pollen limitation, or if abiotic stressors affect allocation to reproduction. For many animal-pollinated plants with expanding ranges, the mechanisms by which they have overcome these barriers are poorly understood. METHODS: In this study, we examined plant-pollinator interactions hypothesized to impact reproduction of the black mangrove, Avicennia germinans, which is expanding northward in coastal Florida, USA. We monitored insects visiting A. germinans populations varying in proximity to the geographic range edge, measured the pollen loads of the most common insect taxa and pollen receipt by A. germinans stigmas, and quantified flower and propagule production. KEY RESULTS: We found that despite an 84 % decline in median floral visits by insects at northernmost versus southernmost sites, range-edge pollen receipt remained high. Notably, local floral visitor assemblages exhibited substantial turnover along the study's latitudinal gradient, with large-bodied bees and hover flies increasingly common at northern sites. We also observed elevated flower production in northern populations and higher per capita reproductive output at the range edge. Furthermore, mean propagule mass in northern populations was 18 % larger than that from the southernmost populations. CONCLUSIONS: These findings reveal no erosion of fecundity in A. germinans populations at range limits, allowing rapid expansion of mangrove cover in the region. These results also illustrate that substantial turnover in the assemblage of flower-visiting insects can occur at an expanding range edge without altering pollen receipt.


Asunto(s)
Polinización , Reproducción , Abejas , Animales , Polinización/fisiología , Insectos/fisiología , Flores/fisiología , Polen/fisiología
5.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002217

RESUMEN

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Reproducibilidad de los Resultados , Plantas
6.
Mol Ecol ; 32(23): 6489-6506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36738159

RESUMEN

The dynamic structure of ecological communities results from interactions among taxa that change with shifts in species composition in space and time. However, our ability to study the interplay of ecological and evolutionary processes on community assembly remains relatively unexplored due to the difficulty of measuring community structure over long temporal scales. Here, we made use of a geological chronosequence across the Hawaiian Islands, representing 50 years to 4.15 million years of ecosystem development, to sample 11 communities of arthropods and their associated plant taxa using semiquantitative DNA metabarcoding. We then examined how ecological communities changed with community age by calculating quantitative network statistics for bipartite networks of arthropod-plant associations. The average number of interactions per species (linkage density), ratio of plant to arthropod species (vulnerability) and uniformity of energy flow (interaction evenness) increased significantly in concert with community age. The index of specialization H 2 ' has a curvilinear relationship with community age. Our analyses suggest that younger communities are characterized by fewer but stronger interactions, while biotic associations become more even and diverse as communities mature. These shifts in structure became especially prominent on East Maui (~0.5 million years old) and older volcanos, after enough time had elapsed for adaptation and specialization to act on populations in situ. Such natural progression of specialization during community assembly is probably impeded by the rapid infiltration of non-native species, with special risk to younger or more recently disturbed communities that are composed of fewer specialized relationships.


Asunto(s)
Artrópodos , Ecosistema , Animales , Evolución Biológica , Artrópodos/genética , Plantas/genética , Hawaii
7.
Proc Natl Acad Sci U S A ; 119(51): e2122354119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508667

RESUMEN

Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Humanos , Biodiversidad , Especies Introducidas , Cambio Climático , Mamíferos
8.
Nat Ecol Evol ; 6(9): 1290-1298, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879541

RESUMEN

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.


Asunto(s)
Biodiversidad , Herbivoria , Animales , Mamíferos , Plantas , Suelo
9.
Ecology ; 103(10): e3768, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35608609

RESUMEN

Top-down effects of predators and bottom-up effects of resources are important drivers of community structure and function in a wide array of ecosystems. Fertilization experiments impose variation in resource availability that can mediate the strength of predator impacts, but the prevalence of such interactions across natural productivity gradients is less clear. We studied the joint impacts of top-down and bottom-up factors in a tropical mangrove forest system, leveraging fine-grained patchiness in resource availability and primary productivity on coastal cays of Belize. We excluded birds from canopies of red mangrove (Rhizophoraceae: Rhizophora mangle) for 13 months in zones of phosphorus-limited, stunted dwarf mangroves, and in adjacent zones of vigorous mangroves that receive detrital subsidies. Birds decreased total arthropod densities by 62%, herbivore densities more than fivefold, and reduced rates of leaf and bud herbivory by 45% and 52%, respectively. Despite similar arthropod densities across both zones of productivity, leaf and bud damage were 2.0 and 4.3 times greater in productive stands. Detrital subsidies strongly impacted a suite of plant traits in productive stands, potentially making leaves more nutritious and vulnerable to damage. Despite consistently strong impacts on herbivory, we did not detect top-down forcing that impacted mangrove growth, which was similar with and without birds. Our results indicated that both top-down and bottom-up forces drive arthropod community dynamics, but attenuation at the plant-herbivore interface weakens top-down control by avian insectivores.


Asunto(s)
Artrópodos , Rhizophoraceae , Animales , Ecosistema , Herbivoria , Fósforo , Plantas , Humedales
10.
J Econ Entomol ; 115(1): 381-386, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34939116

RESUMEN

Emerald ash borer (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)), an invasive phloem-feeding beetle native to Asia, has devastated North American ash forests since its detection in Michigan, United States in 2002. As the emerald ash borer has continued to spread, the potential for successful long-term management hinges upon the release, establishment, and spread of introduced larval and egg parasitoids for biological control. Here, we focus on the establishment and evidence for spatial spread of introduced larval parasitoid, Spathius agrili Yang and Spathius galinae Belokobylskij & Strazanac (Hymenoptera: Braconidae) in the state of Maryland. To assess each species, we analyzed historical release and recovery data and resampled previous release sites and nonrelease sites for establishment. We found little evidence of establishment or spread for S. agrili, despite a comparatively large number of release locations, events, and individuals. By contrast, despite much lower propagule pressure and shorter history of releases, we detected multiple established populations of S. galinae at release sites and at sites up to 90 km from the nearest release point approximately 3 yr after its most current release. Our findings show that S. galinae has established and spread rapidly following field releases whereas its congener, S. agrili has not. Although it may still be too early to evaluate the level of population control and ash protection afforded by S. galinae, these findings indicate the need for continued investment in S. galinae for emerald ash borer classical biological control efforts.


Asunto(s)
Agentes de Control Biológico , Escarabajos , Fraxinus , Avispas , Animales , Escarabajos/parasitología , Especies Introducidas , Larva , Maryland
11.
Ecol Evol ; 11(4): 1814-1828, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33614005

RESUMEN

Rapid advances in genomic tools for use in ecological contexts and non-model systems allow unprecedented insight into interactions that occur beyond direct observation. We developed an approach that couples microbial forensics with molecular dietary analysis to identify species interactions and scavenging by invasive rats on native and introduced birds in Hawaii. First, we characterized bacterial signatures of bird carcass decay by conducting 16S rRNA high-throughput sequencing on chicken (Gallus gallus domesticus) tissues collected over an 11-day decomposition study in natural Hawaiian habitats. Second, we determined if field-collected invasive black rats (Rattus rattus; n = 51, stomach and fecal samples) had consumed birds using molecular diet analysis with two independent PCR assays (mitochondrial Cytochrome Oxidase I and Cytochrome b genes) and Sanger sequencing. Third, we characterized the gut microbiome of the same rats using 16S rRNA high-throughput sequencing and identified 15 bacterial taxa that were (a) detected only in rats that consumed birds (n = 20/51) and (b) were indicative of decaying tissue in the chicken decomposition experiment. We found that 18% of rats (n = 9/51) likely consumed birds as carrion by the presence of bacterial biomarkers of decayed tissue in their gut microbiome. One species of native bird (Myadestes obscurus) and three introduced bird species (Lophura leucomelanos, Meleagris gallopavo, Zosterops japonicus) were detected in the rats' diets, with individuals from these species (except L. nycthemera) likely consumed through scavenging. Bacterial biomarkers of bird carcass decay can persist through rat digestion and may serve as biomarkers of scavenging. Our approach can be used to reveal trophic interactions that are challenging to measure through direct observation.

12.
Pest Manag Sci ; 77(1): 474-481, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32776642

RESUMEN

BACKGROUND: The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is now the most destructive invasive species in North America. While biocontrol using parasitoids shows promising results in natural forests, strategies are needed to protect high-value trees against invasive EAB populations. Emamectin benzoate is a commonly used systemic insecticide for the protection of valuable trees. Methods that optimize its use allow for reduced quantities of insecticide to be released in the environment and save time and money in efforts to protect ash trees from EAB. We hypothesize that a treated tree can also offer a protective neighboring effect to nearby untreated ash trees, allowing for an optimized spatial planning of insecticide applications. RESULTS: We sampled 896 untreated ash trees, in the vicinity of treated trees, in Maryland and Washington DC. We recorded signs of EAB infestation (canopy condition, exit holes, wood pecks, epicormic growth, and bark splits). Two subsequent yearly samplings were made of 198 and 216 trees, respectively. We also present a novel proximity index for this particular application. Results show consistent decrease in EAB infestation signs in untreated trees as proximity to treated trees increases. CONCLUSION: Results support that a neighboring effect occurs. However, proximity to treated trees must be high for a tree to be safely left untreated. This proximity seems rare in forests, but can happen in urban/planted landscapes. Future studies should test and validate these findings, and could lead to a more precise recommended safe index tailored across multiple ash species and geographic regions.


Asunto(s)
Escarabajos , Fraxinus , Insecticidas , Animales , Larva , Maryland , América del Norte , Árboles
13.
Ecology ; 99(11): 2546-2557, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30168591

RESUMEN

Climate-driven global change is shifting the distribution and abundance of foundation species that form the base of ecosystems. The corresponding responses of inhabitant species to shifts in habitat-forming species are poorly understood, however we expect community responses to depend on how species perceive habitat patches and sort among them, particularly along range edges. We used the poleward shift of a mangrove-marsh ecotone to evaluate sorting of marine macrofauna (small fish and decapod crustaceans) among vegetation patches at a series of nested scales. Within the mangrove-marsh ecotone, we deployed retrievable panels of artificial vegetation structures mimicking a marsh grass and two mangrove species in patches dominated by each of these three foundation species. Over six months, we observed macrofaunal sorting by physical structure, isolated on panels, and by patch type, which included stand-level attributes such as production, shading, and chemical cues. We found multiscale partitioning of macrofaunal community composition by site (kilometer scale), vegetation type, and patch type with stand attributes (meters), and physical structure (centimeters). Differences in community composition between vegetation types at each scale indicated that mangroves and marsh grass differ as habitat for marine fauna and that wetland inhabitants can distinguish and sort among fine-grain habitat patches that co-occur within the ecotone. Such differences suggest that shifts in wetland vegetation are consequential for the protection and management of coastal populations. Studies that determine which habitat attributes shape inhabitant fauna associations can help reveal not just the spatial grain at which inhabitants associate with emerging frontier habitat but also how the redistribution of foundation species shapes the pace and resolution of broader community change.


Asunto(s)
Ecosistema , Humedales , Cambio Climático , Poaceae
14.
Sci Rep ; 8(1): 13696, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209287

RESUMEN

Tibia trabeculae and vertebrae of rats as well as human femur were investigated by high-resolution TEM at the atomic scale in order to reveal snapshots of the morphogenetic processes of local bone ultrastructure formation. By taking into account reflections of hydroxyapatite for Fourier filtering the appearance of individual alpha-chains within the triple-helix clearly shows that bone bears the feature of an intergrowth composite structure extending from the atomic to the nanoscale, thus representing a molecular composite of collagen and apatite. Careful Fourier analysis reveals that the non-collagenous protein osteocalcin is present directly combined with octacalcium phosphate. Besides single spherical specimen of about 2 nm in diameter, osteocalcin is spread between and over collagen fibrils and is often observed as pearl necklace strings. In high-resolution TEM, the three binding sites of the γ-carboxylated glutamic acid groups of the mineralized osteocalcin were successfully imaged, which provide the chemical binding to octacalcium phosphate. Osteocalcin is attached to the collagen structure and interacts with the Ca-sites on the (100) dominated hydroxyapatite platelets with Ca-Ca distances of about 9.5 Å. Thus, osteocalcin takes on the functions of Ca-ion transport and suppression of hydroxyapatite expansion.


Asunto(s)
Calcificación Fisiológica/fisiología , Fosfatos de Calcio/metabolismo , Colágeno/metabolismo , Fémur/metabolismo , Osteocalcina/metabolismo , Tibia/metabolismo , Animales , Apatitas/metabolismo , Sitios de Unión/fisiología , Plaquetas/metabolismo , Calcio/metabolismo , Durapatita/metabolismo , Femenino , Ácido Glutámico/metabolismo , Ratas , Ratas Sprague-Dawley
15.
PLoS One ; 13(9): e0202869, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30248110

RESUMEN

Worldwide, native species increasingly contend with the interacting stressors of habitat fragmentation and invasive species, yet their combined effects have rarely been examined. Direct negative effects of invasive omnivores are well documented, but the indirect effects of resource competition or those caused by predator avoidance are unknown. Here we isolated and examined the independent and interactive effects of invasive omnivorous Black rats (Rattus rattus) and forest fragment size on the interactions between avian predators and their arthropod prey. Our study examines whether invasive omnivores and ecosystem fragment size impact: 1) the vertical distribution of arthropod species composition and abundance, and 2) the vertical profile of foraging behaviors of five native and two non-native bird species found in our study system. We predicted that the reduced edge effects and greater structural complexity and canopy height of larger fragments would limit the total and proportional habitat space frequented by rats and thus limit their impact on both arthropod biomass and birds' foraging behavior. We experimentally removed invasive omnivorous Black rats across a 100-fold (0.1 to 12 ha) size gradient of forest fragments on Hawai'i Island, and paired foraging observations of forest passerines with arthropod sampling in the 16 rat-removed and 18 control fragments. Rat removal was associated with shifts in the vertical distribution of arthropod biomass, irrespective of fragment size. Bird foraging behavior mirrored this shift, and the impact of rat removal was greater for birds that primarily eat fruit and insects compared with those that consume nectar. Evidence from this model study system indicates that invasive rats indirectly alter the feeding behavior of native birds, and consequently impact multiple trophic levels. This study suggests that native species can modify their foraging behavior in response to invasive species removal and presumably arrival through behavioral plasticity.


Asunto(s)
Artrópodos/fisiología , Conducta Predatoria/fisiología , Rapaces/fisiología , Animales , Biomasa , Conducta Alimentaria , Bosques , Hawaii , Especies Introducidas , Ratas
16.
PLoS One ; 13(8): e0201883, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30110360

RESUMEN

Invasive predators can profoundly impact native communities, especially in insular ecosystems where functionally equivalent predators were evolutionarily absent. Beyond direct consumption, predators can affect communities indirectly by creating or altering food web linkages among existing species. Where invasive predators consume prey from multiple distinct resource channels, novel links may couple the dynamics of disjunct modules and create indirect interactions between them. Our study focuses on invasive populations of Eleutherodactylus coqui (Anura: Leptodactylidae) on Hawaii Island. Coqui actively forage in the understory and lower canopy at night but return to the forest floor and belowground retreats by day. Recent dietary studies using gut contents and naturally occurring stable isotopes indicate higher than expected consumption of litter arthropods, which in these Hawaiian forests are primarily non-native species. We used laboratory studies to observe diurnal and nocturnal foraging behavior, and experimental field additions of C4 vegetation as a litter tracer to distinguish epigaeic sources from food web pools in the C3 canopy. Lab trials revealed that prey consumption during diurnal foraging was half that consumed during nocturnal foraging. Analysis of δ13C isotopes showed incorporation of C4 carbon into litter arthropods within one month, and Bayesian mixing models estimated that 15-25% of the carbon in coqui tissue was derived from litter sources. These results support recent findings that E. coqui are not quiescent diurnally but instead actively forage. Such activity by a mobile invasive predator may introduce a novel linkage that integrates detrital and foliar resource pools, potentially distributing influences of invasive litter arthropods through the broader system to amplify impacts on native species.


Asunto(s)
Dieta , Especies Introducidas , Conducta Predatoria , Anfípodos/metabolismo , Distribución Animal , Animales , Hormigas/metabolismo , Anuros/metabolismo , Isótopos de Carbono/análisis , Conducta Alimentaria , Cadena Alimentaria , Hawaii , Modelos Biológicos , Fotoperiodo
17.
Biol Lett ; 14(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29491026

RESUMEN

The Asian tiger mosquito, Aedes albopictus, appears to have been extirpated from Palmyra Atoll following rat eradication. Anecdotal biting reports, collection records, and regular captures in black-light traps showed the species was present before rat eradication. Since then, there have been no biting reports and no captures over 2 years of extensive trapping (black-light and scent traps). By contrast, the southern house mosquito, Culex quinquefasciatus, was abundant before and after rat eradication. We hypothesize that mammals were a substantial and preferred blood meal for Aedes, whereas Culex feeds mostly on seabirds. Therefore, after rat eradication, humans and seabirds alone could not support positive population growth or maintenance of Aedes This seems to be the first documented accidental secondary extinction of a mosquito. Furthermore, it suggests that preferred host abundance can limit mosquito populations, opening new directions for controlling important disease vectors that depend on introduced species like rats.


Asunto(s)
Aedes/fisiología , Extinción Biológica , Ratas , Animales , Especies Introducidas , Islas , Mosquitos Vectores/fisiología
18.
Ecology ; 98(12): 3022-3033, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28940315

RESUMEN

Increases in nutrient availability and alterations to mammalian herbivore communities are a hallmark of the Anthropocene, with consequences for the primary producer communities in many ecosystems. While progress has advanced understanding of plant community responses to these perturbations, the consequences for energy flow to higher trophic levels in the form of secondary production are less well understood. We quantified arthropod biomass after manipulating soil nutrient availability and wild mammalian herbivory, using identical methods across 13 temperate grasslands. Of experimental increases in nitrogen, phosphorus, and potassium, only treatments including nitrogen resulted in significantly increased arthropod biomass. Wild mammalian herbivore removal had a marginal, negative effect on arthropod biomass, with no interaction with nutrient availability. Path analysis including all sites implicated nutrient content of the primary producers as a driver of increased arthropod mean size, which we confirmed using 10 sites for which we had foliar nutrient data. Plant biomass and physical structure mediated the increase in arthropod abundance, while the nitrogen treatments accounted for additional variation not explained by our measured plant variables. The mean size of arthropod individuals was 2.5 times more influential on the plot-level total arthropod biomass than was the number of individuals. The eutrophication of grasslands through human activity, especially nitrogen deposition, thus may contribute to higher production of arthropod consumers through increases in nutrient availability across trophic levels.


Asunto(s)
Eutrofización , Pradera , Herbivoria , Mamíferos/fisiología , Animales , Artrópodos , Biomasa , Ecosistema , Humanos , Nitrógeno
19.
Nature ; 537(7618): 93-96, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556951

RESUMEN

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Asunto(s)
Biodiversidad , Fertilizantes , Pradera , Plantas/clasificación , Plantas/metabolismo , Biomasa , Alimentos , Luz , Plantas/efectos de la radiación , Poaceae/clasificación , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Poaceae/efectos de la radiación
20.
Artículo en Inglés | MEDLINE | ID: mdl-27114584

RESUMEN

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.


Asunto(s)
Biomasa , Ecosistema , Animales , Biodiversidad , Modelos Biológicos , Plancton/fisiología , Fenómenos Fisiológicos de las Plantas , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...