Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29464196

RESUMEN

The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the ß-subunit (ß-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the ß-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR ß-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Receptores de Glicina/metabolismo , Sinapsis/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Escherichia coli , Femenino , Masculino , Unión Proteica , Estructura Terciaria de Proteína , Ratas Sprague-Dawley , Médula Espinal/metabolismo
3.
EMBO Mol Med ; 7(12): 1580-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26613940

RESUMEN

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild-type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Epilepsia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Coenzimas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatología , Humanos , Metaloproteínas/metabolismo , Cofactores de Molibdeno , Pteridinas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo
4.
PLoS One ; 10(5): e0125413, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25955356

RESUMEN

Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR) conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.


Asunto(s)
Evolución Biológica , Proteínas Portadoras/genética , Galago/genética , Genoma , Proteínas de la Membrana/genética , Ratones/genética , Receptores de Glicina/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Exones , Galago/clasificación , Galago/metabolismo , Expresión Génica , Variación Genética , Intrones , Proteínas de la Membrana/metabolismo , Ratones/clasificación , Ratones/metabolismo , Datos de Secuencia Molecular , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/ultraestructura , Filogenia , Receptores de Glicina/metabolismo , Especificidad de la Especie , Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
5.
EMBO J ; 30(18): 3842-53, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21829170

RESUMEN

Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the ß-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the ß-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Glicina/metabolismo , Membrana Celular/química , Fosforilación , Unión Proteica
6.
Plant J ; 62(6): 925-35, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20345606

RESUMEN

Actin nucleation facilitated by the ARP2/3 complex plays a central role in plant cell shape development. The molecular characterization of the distorted class of trichome mutants has recently revealed the SCAR/WAVE complex as an essential upstream activator of ARP2/3 function in plants. The SCAR/WAVE complex is conserved from animals to plants and, generally, is composed of the five subunits SCAR/WAVE, PIR121, NAP125, BRICK and ABI. In plants, four of the five subunits have been shown to participate in trichome and pavement morphogenesis. Plant ABI-like proteins (ABIL), however, which constitute a small four-member protein family in Arabidopsis thaliana, have not been characterized functionally, so far. Here we demonstrate that microRNA knock-down of the ABIL3 gene leads to a distorted trichome phenotype reminiscent of ARP2/3 mutant phenotypes and consistent with a crucial role of the ABIL3 protein in an ARP2/3-activating SCAR/WAVE complex. In contrast to ARP2/3 mutants, however, the ABIL3 knock-down stimulated cell elongation in the root, indicating distinct functions of the ABIL3 protein in different tissues. Furthermore, we provide evidence that ABIL3 associates with microtubules in vivo, opening up the intriguing possibility that ABI-like proteins have a function in linking SCAR/WAVE-dependent actin nucleation with organization of the microtubule cytoskeleton.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Raíces de Plantas/citología , Actinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aumento de la Célula , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , MicroARNs/genética , Familia de Multigenes , Mutación , Raíces de Plantas/crecimiento & desarrollo , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...