Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(2): e2302348, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37807640

RESUMEN

Many of the peculiar properties of the vasculature are related to the arrangement of anisotropic proteinaceous fibers in vessel walls. Understanding and imitating these arrangements can potentially lead to new therapies for cardiovascular diseases. These can be pre-surgical planning, for which patient-specific ex vivo anatomical models for endograft testing are of interest. Alternatively, therapies can be based on tissue engineering, for which degradable in vitro cell growth substrates are used to culture replacement parts. In both cases, materials are desirable that imitate the biophysical properties of vessels, including their tubular shapes and compliance. This work contributes to these demands by offering methods for the manufacturing of anisotropic 3D-printed nanofibrous tubular structures that have similar biophysical properties as porcine aortae, that are biocompatible, and that allow for controlled nutrient diffusion. Tubes of various sizes with axial, radial, or alternating nanofiber orientation along the blood flow direction are manufactured by a customized method. Blood pressure-resistant, compliant, stable, and cell culture-compatible structures are obtained, that can be degraded in vitro on demand. It is suggested that these healthcare materials can contribute to the next generation of cardiovascular therapies of ex vivo pre-surgical planning or in vitro cell culture.


Asunto(s)
Materiales Biocompatibles , Nanofibras , Animales , Humanos , Porcinos , Materiales Biocompatibles/química , Nanofibras/química , Ingeniería de Tejidos/métodos , Técnicas de Cultivo de Célula/métodos , Impresión Tridimensional , Andamios del Tejido/química
2.
Front Cardiovasc Med ; 10: 1164285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424903

RESUMEN

Objective: Currently used patch materials in congenital cardiac surgery do not grow, renew, or remodel. Patch calcification occurs more rapidly in pediatric patients eventually leading to reoperations. Bacterial cellulose (BC) as a biogenic polymer offers high tensile strength, biocompatibility, and hemocompatibility. Thus, we further investigated the biomechanical properties of BC for use as patch material. Methods: The BC-producing bacteria Acetobacter xylinum were cultured in different environments to investigate optimal culturing conditions. For mechanical characterization, an established method of inflation for biaxial testing was used. The applied static pressure and deflection height of the BC patch were measured. Furthermore, a displacement and strain distribution analysis was performed and compared to a standard xenograft pericardial patch. Results: The examination of the culturing conditions revealed that the BC became homogenous and stable when cultivated at 29°C, 60% oxygen concentration, and culturing medium exchange every third day for a total culturing period of 12 days. The estimated elastic modulus of the BC patches ranged from 200 to 530 MPa compared to 230 MPa for the pericardial patch. The strain distributions, calculated from preloaded (2 mmHg) to 80 mmHg inflation, show BC patch strains ranging between 0.6% and 4%, which was comparable to the pericardial patch. However, the pressure at rupture and peak deflection height varied greatly, ranging from 67 to around 200 mmHg and 0.96 to 5.28 mm, respectively. The same patch thickness does not automatically result in the same material properties indicating that the manufacturing conditions have a significant impact on durability. Conclusions: BC patches can achieve comparable results to pericardial patches in terms of strain behavior as well as in the maximum applied pressure that can be withstood without rupture. Bacterial cellulose patches could be a promising material worth further research.

3.
J Vasc Surg Cases Innov Tech ; 9(3): 101195, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37496652

RESUMEN

Objective: The optimal degree of proximal thoracic endograft oversizing when aiming for durable sealing in prosthetic grafts is unknown. The aim of the present study was to create an in vitro model for testing different oversized thoracic endografts in a reproducible and standardized manner and, subsequently, determine the optimal oversizing range when planning procedures with a proximal landing in prosthetic zones in the descending thoracic aorta or aortic arch. Methods: An in vitro model consisting of a fixed 24-mm polyethylene terephthalate (Dacron; DuPont) graft sutured proximally and distally to two specifically designed 40-mm rings, with four force sensing resistors attached at four equally distant positions and a USB camera attached proximally for photographic and video documentation was used for deployment of Zenith TX2 (Cook Medical Inc) dissection platform endografts with diameters between 24 and 36 mm. After deployment, ballooning with a 32-mm compliant balloon was performed to simulate real-life conditions. The assessment of oversizing included visual inspection, calculation of the valley areas created between the prosthetic wall and the stent graft fabric, distance between the stent graft peaks, the radial force exerted by the proximal sealing stent, and the pull-out force necessary for endograft extraction. Results: A total of 70 endografts were deployed with the oversizing ranging from 0% to 50%: 10 × 24 mm, 10 × 26 mm, 10 × 28 mm, 10 × 30 mm, 10 × 32 mm, 10 × 34 mm, and 10 × 36 mm. Two cases of infolding occurred with 50% oversizing. The valley areas increased from 8.79 ± 0.23 mm2 with 16.7% oversizing to 14.26 ± 0.45 mm2 with 50% oversizing (P < .001). A significant difference was found in the pull-out force required for endografts with <10% oversizing vs ≥10% oversizing (P < .001). The difference reached a plateau at ∼4 N with oversizing of >15%. The mean radial force of the proximal sealing stent was greater after remodeling with a compliant balloon (0.55 ± 0.02 N vs 0.60 ± 0.02 N after ballooning; P < .001). However, greater oversizing did not lead to an increase in the radial force exerted by the proximal sealing stent. Conclusions: The findings from the present study offer additional insight into the mechanics of oversized stent grafts in surgical grafts. In endografts with the Zenith stent design (TX2), oversizing of <16.7% resulted in reduced resistance to displacement forces, and oversizing of >50% was associated with major infolding in 20% of cases. Long-term in vitro and in vivo testing is required to understand how these mechanical properties affect the clinical outcomes of oversizing.

4.
J Mater Sci Mater Med ; 34(5): 19, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37074546

RESUMEN

The demand for decellularized xenogeneic tissues used in reconstructive heart surgery has increased over the last decades. Complete decellularization of longer and tubular aortic sections suitable for clinical application has not been achieved so far. The present study aims at analyzing the effect of pressure application on decellularization efficacy of porcine aortas using a device specifically designed for this purpose. Fresh porcine descending aortas of 8 cm length were decellularized using detergents. To increase decellularization efficacy, detergent treatment was combined with pressure application and different treatment schemes. Quantification of penetration depth as well as histological staining, scanning electron microscopy, and tensile strength tests were used to evaluate tissue structure. In general, application of pressure to aortic tissue does neither increase the decellularization success nor the penetration depth of detergents. However, it is of importance from which side of the aorta the pressure is applied. Application of intermittent pressure from the adventitial side does significantly increase the decellularization degree at the intimal side (compared to the reference group), but had no influence on the penetration depth of SDC/SDS at both sides. Although the present setup does not significantly improve the decellularization success of aortas, it is interesting that the application of pressure from the adventitial side leads to improved decellularization of the intimal side. As no adverse effects on tissue structure nor on mechanical properties were observed, optimization of the present protocol may potentially lead to complete decellularization of larger aortic segments.


Asunto(s)
Aorta Torácica , Detergentes , Porcinos , Animales , Detergentes/análisis , Detergentes/farmacología , Aorta , Microscopía Electrónica de Rastreo , Corazón , Ingeniería de Tejidos/métodos , Matriz Extracelular/química , Andamios del Tejido/química
5.
Front Cardiovasc Med ; 10: 1092007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937915

RESUMEN

Background: Preoperative anxiety in cardiac surgery can lead to prolonged hospital stays and negative postoperative outcomes. An improved patient education using 3D models may reduce preoperative anxiety and risks associated with it. Methods: Patient education was performed with standardized paper-based methods (n = 34), 3D-printed models (n = 34) or virtual reality models (n = 31). Anxiety and procedural understanding were evaluated using questionnaires prior to and after the patient education. Additionally, time spent for the education and overall quality were evaluated among further basic characteristics (age, gender, medical expertise, previous non-cardiac surgery and previously informed patients). Included surgeries were coronary artery bypass graft, surgical aortic valve replacement and thoracic aortic aneurysm surgery. Results: A significant reduction in anxiety measured by Visual Analog Scale was achieved after patient education with virtual reality models (5.00 to 4.32, Δ-0.68, p < 0.001). Procedural knowledge significantly increased for every group after the patient education while the visualization and satisfaction were best rated for patient education with virtual reality. Patients rated the quality of the patient education using both visualization methods individually [3D and virtual reality (VR) models] higher compared to the control group of conventional paper-sheets (control paper-sheets: 86.32 ± 11.89%, 3D: 94.12 ± 9.25%, p < 0.0095, VR: 92.90 ± 11.01%, p < 0.0412). Conclusion: Routine patient education with additional 3D models can significantly improve the patients' satisfaction and reduce subjective preoperative anxiety effectively.

6.
GMS J Med Educ ; 39(2): Doc23, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692357

RESUMEN

Background: This project aims to develop a new concept in training pediatric cardiologists to meet the requirements of interventional cardiac catheterizations today in terms of complexity and importance. This newly developed hands-on training program is supposed to enable the acquisition of certain skills which are necessary when investigating and treating patients in a catheter laboratory. Methods: Based on anonymous CT-scans of pediatric patients' digital 3D heart models with or without cardiac defects were developed and printed three-dimensionally in a flexible material visible under X-ray. Hands-on training courses were offered using models of a healthy heart and the most common congenital heart defects (CHD). An evaluation was performed by quantifying fluoroscopy times (FL-time) and a questionnaire. Results: The acceptance of theoretical and practical contents within the hands-on training was very positive. It was demonstrated that it is possible to master various steps of a diagnostic procedure and an intervention as well as to practice and repeat them independently which significantly reduced FL-time. The participants stated that the hands-on training led to more confidence in interventions on real patients. Conclusion: With the development of a training module using 3D-printed heart models, basic and advanced training in the field of diagnostic cardiac examinations as well as interventional therapies of CHD is possible. The learning effect for both, practical skills and theoretical understanding, was significant which underlines the importance of integrating such hands-on trainings on 3D heart models in education and practical training.


Asunto(s)
Cardiología , Cardiopatías Congénitas , Cardiología/educación , Niño , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/terapia , Humanos , Aprendizaje , Impresión Tridimensional
7.
J Vis Exp ; (181)2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35404357

RESUMEN

Electrospinning has become a widely used technique in cardiovascular tissue engineering as it offers the possibility to create (micro-)fibrous scaffolds with adjustable properties. The aim of this study was to create multilayered scaffolds mimicking the architectural fiber characteristics of human heart valve leaflets using conductive 3D-printed collectors. Models of aortic valve cusps were created using commercial computer-aided design (CAD) software. Conductive polylactic acid was used to fabricate 3D-printed leaflet templates. These cusp negatives were integrated into a specifically designed, rotating electrospinning mandrel. Three layers of polyurethane were spun onto the collector, mimicking the fiber orientation of human heart valves. Surface and fiber structure was assessed with a scanning electron microscope (SEM). The application of fluorescent dye additionally permitted the microscopic visualization of the multilayered fiber structure. Tensile testing was performed to assess the biomechanical properties of the scaffolds. 3D-printing of essential parts for the electrospinning rig was possible in a short time for a low budget. The aortic valve cusps created following this protocol were three-layered, with a fiber diameter of 4.1 ± 1.6 µm. SEM imaging revealed an even distribution of fibers. Fluorescence microscopy revealed individual layers with differently aligned fibers, with each layer precisely reaching the desired fiber configuration. The produced scaffolds showed high tensile strength, especially along the direction of alignment. The printing files for the different collectors are available as Supplemental File 1, Supplemental File 2, Supplemental File 3, Supplemental File 4, and Supplemental File 5. With a highly specialized setup and workflow protocol, it is possible to mimic tissues with complex fiber structures over multiple layers. Spinning directly on 3D-printed collectors creates considerable flexibility in manufacturing 3D shapes at low production costs.


Asunto(s)
Biomimética , Andamios del Tejido , Válvula Aórtica , Humanos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
8.
3D Print Med ; 7(1): 25, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463879

RESUMEN

BACKGROUND: 3D printed models of pediatric hearts with congenital heart disease have been proven helpful in simulation training of diagnostic and interventional catheterization. However, anatomically accurate 3D printed models are traditionally based on real scans of clinical patients requiring specific imaging techniques, i.e., CT or MRI. In small children both imaging technologies are rare as minimization of radiation and sedation is key. 3D sonography does not (yet) allow adequate imaging of the entire heart for 3D printing. Therefore, an alternative solution to create variant 3D printed heart models for teaching and hands-on training has been established. METHODS: In this study different methods utilizing image processing and computer aided design software have been established to overcome this shortage and to allow unlimited variations of 3D heart models based on single patient scans. Patient-specific models based on a CT or MRI image stack were digitally modified to alter the original shape and structure of the heart. Thereby, 3D hearts showing various pathologies were created. Training models were adapted to training level and aims of hands-on workshops, particularly for interventional cardiology. RESULTS: By changing the shape and structure of the original anatomy, various training models were created of which four examples are presented in this paper: 1. Design of perimembranous and muscular ventricular septal defect on a heart model with patent ductus arteriosus, 2. Series of heart models with atrial septal defect showing the long-term hemodynamic effect of the congenital heart defect on the right atrial and ventricular wall, 3. Implementation of simplified heart valves and addition of the myocardium to a right heart model with pulmonary valve stenosis, 4. Integration of a constructed 3D model of the aortic valve into a pulsatile left heart model with coarctation of the aorta. All presented models have been successfully utilized and evaluated in teaching or hands-on training courses. CONCLUSIONS: It has been demonstrated that non-patient-specific anatomical variants can be created by modifying existing patient-specific 3D heart models. This way, a range of pathologies can be modeled based on a single CT or MRI dataset. Benefits of designed 3D models for education and training purposes have been successfully applied in pediatric cardiology but can potentially be transferred to simulation training in other medical fields as well.

9.
Artif Organs ; 45(12): 1477-1490, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34219220

RESUMEN

Decellularization (DC) of biomaterials with bioreactors is widely used to produce scaffolds for tissue engineering. This study uses 3D printing to develop efficient but low-cost DC bioreactors. Two bioreactors were developed to decellularize pericardial patches and vascular grafts. Flow profiles and pressure distribution inside the bioreactors were optimized by steady-state computational fluid dynamics (CFD) analysis. Printing materials were evaluated by cytotoxicity assessment. Following evaluation, all parts of the bioreactors were 3D printed in a commercial fused deposition modeling printer. Samples of bovine pericardia and porcine aortae were decellularized using established protocols. An immersion and agitation setup was used as a control. With histological assessment, DNA quantification and biomechanical testing treatment effects were evaluated. CFD analysis of the pericardial bioreactor revealed even flow and pressure distribution in between all pericardia. The CFD analysis of the vessel bioreactor showed increased intraluminal flow rate and pressure compared to the vessel's outside. Cytotoxicity assessment of the used printing material revealed no adverse effect on the tissue. Complete DC was achieved for all samples using the 3D printed bioreactors while DAPI staining revealed residual cells in aortic vessels of the control group. Histological analysis showed no structural changes in the decellularized samples. Additionally, biomechanical properties exhibited no significant change compared to native samples. This study presents a novel approach to manufacturing highly efficient and low budget 3D printed bioreactors for the DC of biomaterials. When compared to standard protocols, the bioreactors offer a cost effective, fast, and reproducible approach, which vastly improves the DC results.


Asunto(s)
Reactores Biológicos , Ingeniería de Tejidos/métodos , Animales , Aorta , Fenómenos Biomecánicos , Bovinos , Diseño de Equipo , Hidrodinámica , Pericardio , Polímeros/toxicidad , Impresión Tridimensional/economía , Porcinos
10.
J Mech Behav Biomed Mater ; 118: 104432, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33853036

RESUMEN

OBJECTIVES: Bovine pericardium - native, fixed as well as decellularized - is one of the most common implant materials in modern cardiovascular surgery. Although used in everyday procedures, there are no recommendations in regard to which part of the pericardium to prefer. It was the aim of this study, to identify areas of the pericardium with consistent properties and high durability. METHODS: Fresh bovine pericardia were collected from a local slaughterhouse. The native pericardia were analyzed at 140 spots in regard to thickness and fiber orientation. Based on these results, five promising areas were selected for further evaluation. The pericardia were decellularized with detergents (0.5% sodiumdesoxycholate/0.5% sodiumdodecylsulfate) and subsequently incubated in DNAse. The two investigation groups native und DC consisted of 20 samples each. The efficiency of the decellularization was evaluated by DNA quantification, as well as DAPI and H&E staining. Biomechanical properties were determined using uniaxial tensile tests. To evaluate the microstructure, scanning electron microscopy, Picrosirius Red- and Movat's Pentachrome staining were utilized. To assess the long-term durability, patches were tested in a high-cycle system for a duration equaling the stress of three months in-vivo. Commercially available, fixed pericardium patches served as control group. RESULTS: Only a limited part of the pericardium showed a homogenous and usable thickness. The decellularization removed all cell nuclei, proven by negative DAPI and H&E staining, and also significantly reduced the DNA amount by 84%. The mechanical testing revealed that two investigated areas had an inconsistent tensile strength. Microscopical observations showed that the integrity of the extracellular matrix did not suffer by the decellularization procedure. During the long-term testing, most of the pericardia slowly lost tautness, though none of them got measurably damaged. Especially one area showed no decline of tensile strength after durability testing at all. Decellularized patches and fixed patches achieved comparable results in mechanical testing and microscopical evaluation after the durability testing. CONCLUSION: We could clearly document significant, location-based differences within single pericardia. Only one area showed consistent properties and a high durability. We highly recommend taking this into account for future implant material selections.


Asunto(s)
Bioprótesis , Ingeniería de Tejidos , Animales , Bovinos , Ensayo de Materiales , Pericardio , Andamios del Tejido
11.
J Vis Exp ; (167)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33522517

RESUMEN

Catheter-based interventions are standard treatment options for cardiovascular pathologies. Therefore, patient-specific models could help training physicians' wire-skills as well as improving planning of interventional procedures. The aim of this study was to develop a manufacturing process of patient-specific 3D-printed models for cardiovascular interventions. To create a 3D-printed elastic phantom, different 3D-printing materials were compared to porcine biological tissues (i.e., aortic tissue) in terms of mechanical characteristics. A fitting material was selected based on comparative tensile tests and specific material thicknesses were defined. Anonymized contrast-enhanced CT-datasets were collected retrospectively. Patient-specific volumetric models were extracted from these datasets and subsequently 3D-printed. A pulsatile flow loop was constructed to simulate the intraluminal blood flow during interventions. Models' suitability for clinical imaging was assessed by x-ray imaging, CT, 4D-MRI and (Doppler) ultrasonography. Contrast medium was used to enhance visibility in x-ray-based imaging. Different catheterization techniques were applied to evaluate the 3D-printed phantoms in physicians' training as well as for pre-interventional therapy planning. Printed models showed a high printing resolution (~30 µm) and mechanical properties of the chosen material were comparable to physiological biomechanics. Physical and digital models showed high anatomical accuracy when compared to the underlying radiological dataset. Printed models were suitable for ultrasonic imaging as well as standard x-rays. Doppler ultrasonography and 4D-MRI displayed flow patterns and landmark characteristics (i.e., turbulence, wall shear stress) matching native data. In a catheter-based laboratory setting, patient-specific phantoms were easy to catheterize. Therapy planning and training of interventional procedures on challenging anatomies (e.g., congenital heart disease (CHD)) was possible. Flexible patient-specific cardiovascular phantoms were 3D-printed, and the application of common clinical imaging techniques was possible. This new process is ideal as a training tool for catheter-based (electrophysiological) interventions and can be used in patient-specific therapy planning.


Asunto(s)
Sistema Cardiovascular/diagnóstico por imagen , Fantasmas de Imagen , Impresión Tridimensional , Animales , Aorta Torácica/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Porcinos , Tomografía Computarizada por Rayos X , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...