Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 248: 106880, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35390600

RESUMEN

The purposes of this study are to determine the content and origin of anthropogenic fallout radionuclides (FRN) in soils of Mount Khuko, located in the western sector of the Caucasus Mountains and to assess the possibility to use them for evaluation of sediment redistribution for the alpine grasslands,. The field study was carried out in August 2019 near the top of Mount Khuko, located in the western part of the main Caucasus Mountain Ridge. Integral and incremental soil samples were collected from the different morphological units of the studied area. The content of 137Cs and 241Am in soil samples was evaluated using laboratory gamma-spectrometry. A part of samples was selected for Pu isotopes extraction and then alpha-spectrometric analysis. It was established that the 137Cs contamination of soils in the studied area has at least two sources of origin. The first source is the 137Cs bomb-derived fallout after the bomb tests in 1950-60th, which is widespread across the globe. The second source is 137Cs Chernobyl-derived fallout High random variability (Cv = 25-42%) was found within reference sites, located at the undisturbed areas on the local flat interfluves due to high variability of soil characteristics (grain size, density, organic matter content etc.). However minimum spatial variability (range 12,2-14,3 kBq/m2) was identified for the mean value of 137Cs inventories for all 5 reference sites located in the different parts of the studied area. It is difficult to separate individual peaks of the bomb-derived and Chernobyl-derived 137Cs falloutin sediment sinks with low sedimentation rates. Application 239,240Pu as an additional chronological marker allows to identify the origin of above mention peaks in the soils of alpine grasslands and of dry lake bottom.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Contaminantes Radiactivos del Agua , Lagos , Monitoreo de Radiación/métodos , Suelo/química , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis
2.
Environ Pollut ; 262: 114269, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32146365

RESUMEN

The specific activities of natural (210Pb, 226Ra, and 232Th) and artificial (137Cs, 239,240Pu, and 241Am) radionuclides in the sediments of two North Caucasus lakes were determined. The two lakes, Lake Khuko and Lake Donguz-Orun, differ in their sedimentation conditions. Based on the use of unsupported 210Pbex and both Chernobyl-derived and bomb-derived 137Cs as chronological markers, it was established that the sedimentation rates in Lake Khuko over the past 55-60 y did not exceed 0.017 cm y-1. Sedimentation rates in Lake Donguz-Orun were found to be more than an order of magnitude higher. In the latter case, the sedimentation rates for the period from 1986 to the present were over 1.5 times higher than they were for the period 1963-1986. The differences in sedimentation rates were due to differences in the rates of denudation of their respective catchment areas. The specific activities of artificial radionuclides (137Cs, 2600 Bq kg-1; 239,240Pu, 162 Bq kg-1; and 241Am, 36 Bq kg-1) and their ratios in the sediments of Lake Khuko show that their deposition was mainly due to global stratospheric fallout of technogenic radionuclides associated with nuclear bomb testing during 1954-1963-rather than fallout from the Chernobyl accident. Several factors, including the mode of precipitation, features of the surface runoff, and location of Lake Khuko, were responsible for the accumulation of artificial radionuclides.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Agua/análisis , Radioisótopos de Cesio/análisis , Sedimentos Geológicos , Lagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA