Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(4): e0264092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35442993

RESUMEN

By 13,000 BP human populations were present across North America, but the exact date of arrival to the continent, especially areas south of the continental ice sheets, remains unclear. Here we examine patterns in the stratigraphic integrity of early North American sites to gain insight into the timing of first colonization. We begin by modeling stratigraphic mixing of multicomponent archaeological sites to identify signatures of stratigraphic integrity in vertical artifact distributions. From those simulations, we develop a statistic we call the Apparent Stratigraphic Integrity Index (ASI), which we apply to pre- and post-13,000 BP archaeological sites north and south of the continental ice sheets. We find that multiple early Beringian sites dating between 13,000 and 14,200 BP show excellent stratigraphic integrity. Clear signs of discrete and minimally disturbed archaeological components do not appear south of the ice sheets until the Clovis period. These results provide support for a relatively late date of human arrival to the Americas.


Asunto(s)
Arqueología , Indígenas Norteamericanos , Américas , Humanos , Cubierta de Hielo , América del Norte
2.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24256729

RESUMEN

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Asunto(s)
Pueblo Asiatico/genética , Genoma Humano/genética , Indígenas Norteamericanos/etnología , Indígenas Norteamericanos/genética , Filogenia , Población Blanca/genética , Animales , Asia/etnología , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración , Flujo Génico/genética , Genoma Mitocondrial/genética , Haplotipos/genética , Humanos , Indígenas Norteamericanos/clasificación , Masculino , Filogeografía , Siberia/etnología , Esqueleto
3.
Nature ; 479(7373): 359-64, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22048313

RESUMEN

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Asunto(s)
Biota , Cambio Climático/historia , Extinción Biológica , Actividades Humanas/historia , Mamíferos/fisiología , Animales , Teorema de Bayes , Bison , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Europa (Continente) , Fósiles , Variación Genética , Geografía , Historia Antigua , Caballos , Humanos , Mamíferos/genética , Mamuts , Datos de Secuencia Molecular , Dinámica Poblacional , Reno , Siberia , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...