Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 286(11): 2118-2134, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30771275

RESUMEN

Alternative routes for the post-chorismate branch of the biosynthetic pathway leading to tyrosine exist, the 4-hydroxyphenylpyruvate or the arogenate route. The arogenate route involves the transamination of prephenate into arogenate. In a previous study, we found that, depending on the microorganisms possessing the arogenate route, three different aminotransferases evolved to perform prephenate transamination, that is, 1ß aspartate aminotransferase (1ß AAT), N-succinyl-l,l-diaminopimelate aminotransferase, and branched-chain aminotransferase. The present work aimed at identifying molecular determinant(s) of 1ß AAT prephenate aminotransferase (PAT) activity. To that purpose, we conducted X-ray crystal structure analysis of two PAT competent 1ß AAT from Arabidopsis thaliana and Rhizobium meliloti and one PAT incompetent 1ß AAT from R. meliloti. This structural analysis supported by site-directed mutagenesis, modeling, and molecular dynamics simulations allowed us to identify a molecular determinant of PAT activity in the flexible N-terminal loop of 1ß AAT. Our data reveal that a Lys/Arg/Gln residue in position 12 in the sequence (numbering according to Thermus thermophilus 1ß AAT), present only in PAT competent enzymes, could interact with the 4-hydroxyl group of the prephenate substrate, and thus may have a central role in the acquisition of PAT activity by 1ß AAT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Aspartato Aminotransferasas/metabolismo , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/metabolismo , Sinorhizobium meliloti/enzimología , Transaminasas/metabolismo , Tirosina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos Dicarboxílicos/biosíntesis , Proteínas de Arabidopsis/química , Aspartato Aminotransferasas/química , Cloroplastos/enzimología , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato , Thermus thermophilus/enzimología , Transaminasas/química , Tirosina/análogos & derivados , Tirosina/biosíntesis
2.
Plant J ; 87(6): 641-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27232113

RESUMEN

Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate-limiting enzymes and negative feedback inhibition by end-products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)-norcoclaurine-6-O-methyltransferase (6OMT), a key rate-limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end-products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S-adenosyl-l-homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time-dependent sensitivity toward sanguinarine.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Thalictrum/enzimología , Benzofenantridinas/metabolismo , Benzofenantridinas/farmacología , Bencilisoquinolinas/metabolismo , Berberina/farmacología , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Metiltransferasas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína , Thalictrum/metabolismo
3.
J Biol Chem ; 289(6): 3198-208, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24302739

RESUMEN

The aromatic amino acids phenylalanine and tyrosine represent essential sources of high value natural aromatic compounds for human health and industry. Depending on the organism, alternative routes exist for their synthesis. Phenylalanine and tyrosine are synthesized either via phenylpyruvate/4-hydroxyphenylpyruvate or via arogenate. In arogenate-competent microorganisms, an aminotransferase is required for the transamination of prephenate into arogenate, but the identity of the genes is still unknown. We present here the first identification of prephenate aminotransferases (PATs) in seven arogenate-competent microorganisms and the discovery that PAT activity is provided by three different classes of aminotransferase, which belong to two different fold types of pyridoxal phosphate enzymes: an aspartate aminotransferase subgroup 1ß in tested α- and ß-proteobacteria, a branched-chain aminotransferase in tested cyanobacteria, and an N-succinyldiaminopimelate aminotransferase in tested actinobacteria and in the ß-proteobacterium Nitrosomonas europaea. Recombinant PAT enzymes exhibit high activity toward prephenate, indicating that the corresponding genes encode bona fide PAT. PAT functionality was acquired without other modification of substrate specificity and is not a general catalytic property of the three classes of aminotransferases.


Asunto(s)
Aminoácidos Dicarboxílicos , Bacterias , Proteínas Bacterianas , Ciclohexenos , Evolución Molecular , Transaminasas , Tirosina/análogos & derivados , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/genética , Aminoácidos Dicarboxílicos/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclohexenos/química , Ciclohexenos/metabolismo , Humanos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Transaminasas/química , Transaminasas/genética , Transaminasas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
4.
J Biol Chem ; 286(29): 26061-70, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21613226

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Biocatálisis , Delftia acidovorans/enzimología , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Dominio Catalítico , Secuencia Conservada , Ácido Homogentísico/metabolismo , Hidroxilación , Transferasas Intramoleculares/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción
5.
FEBS Lett ; 584(20): 4357-60, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20883697

RESUMEN

In all organisms synthesising phenylalanine and/or tyrosine via arogenate, a prephenate aminotransferase is required for the transamination of prephenate into arogenate. The identity of the gene encoding this enzyme in the organisms where this activity occurs is still unknown. Glutamate/aspartate-prephenate aminotransferase (PAT) is thus the last homeless enzyme in the aromatic amino acids pathway. We report on the purification, mass spectrometry identification and biochemical characterization of Arabidopsis thaliana prephenate aminotransferase. Our data revealed that this activity is housed by the prokaryotic-type plastidic aspartate aminotransferase (At2g22250). This represents the first identification of a gene encoding PAT.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Aspartato Aminotransferasas/metabolismo , Transaminasas/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspartato Aminotransferasas/genética , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Ácido Glutámico/metabolismo , Cinética , Espectrometría de Masas , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transaminasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA