Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biopharm Drug Dispos ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823029

RESUMEN

Bumetanide is used widely as a tool and off-label treatment to inhibit the Na-K-2Cl cotransporter NKCC1 in the brain and thereby to normalize intra-neuronal chloride levels in several brain disorders. However, following systemic administration, bumetanide only poorly penetrates into the brain parenchyma and does not reach levels sufficient to inhibit NKCC1. The low brain penetration is a consequence of both the high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, and of brain efflux transport. In previous studies, bumetanide was determined in the whole brain or a few brain regions, such as the hippocampus. However, the blood-brain barrier and its efflux transporters are heterogeneous across brain regions, so it cannot be excluded that bumetanide reaches sufficiently high brain levels for NKCC1 inhibition in some discrete brain areas. Here, bumetanide was determined in 14 brain regions following i.v. administration of 10 mg/kg in rats. Because bumetanide is much more rapidly eliminated by rats than humans, its metabolism was reduced by pretreatment with piperonyl butoxide. Significant, up to 5-fold differences in regional bumetanide levels were determined with the highest levels in the midbrain and olfactory bulb and the lowest levels in the striatum and amygdala. Brain:plasma ratios ranged between 0.004 (amygdala) and 0.022 (olfactory bulb). Regional brain levels were significantly correlated with local cerebral blood flow. However, regional bumetanide levels were far below the IC50 (2.4 µM) determined previously for rat NKCC1. Thus, these data further substantiate that the reported effects of bumetanide in rodent models of brain disorders are not related to NKCC1 inhibition in the brain.

2.
Toxics ; 11(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37112566

RESUMEN

Emerging contaminants are produced globally at high rates and often ultimately find their way into the aquatic environment. These include substances contained in anti-seizure medication (ASM), which are currently appearing in surface waters at increasing concentrations in Germany. Unintentional and sublethal, chronic exposure to pharmaceuticals such as ASMs has unknown consequences for aquatic wildlife. Adverse effects of ASMs on the brain development are documented in mammals. Top predators such as Eurasian otters (Lutra lutra) are susceptible to the bioaccumulation of environmental pollutants. Still little is known about the health status of the otter population in Germany, while the detection of various pollutants in otter tissue samples has highlighted their role as an indicator species. To investigate potential contamination with pharmaceuticals, Eurasian otter brain samples were screened for selected ASMs via high-performance liquid chromatography and mass spectrometry. Via histology, brain sections were analyzed for the presence of potential associated neuropathological changes. In addition to 20 wild otters that were found dead, a control group of 5 deceased otters in human care was studied. Even though none of the targeted ASMs were detected in the otters, unidentified substances in many otter brains were measured. No obvious pathology was observed histologically, although the sample quality limited the investigations.

3.
Epilepsy Behav ; 139: 109057, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586153

RESUMEN

Loop diuretics such as furosemide and bumetanide, which act by inhibiting the Na-K-2Cl cotransporter NKCC2 at the thick ascending limb of the loop of Henle, have been shown to exert anti-seizure effects. However, the exact mechanism of this effect is not known. For bumetanide, it has been suggested that inhibition of the NKCC isoform NKCC1 in the membrane of brain neurons may be involved; however, NKCC1 is expressed by virtually all cell types in the brain, which makes any specific targeting of neuronal NKCC1 by bumetanide impossible. In addition, bumetanide only poorly penetrates the brain. We have previously shown that loop diuretics azosemide and torasemide also potently inhibit NKCC1. In contrast to bumetanide and furosemide, azosemide and torasemide lack a carboxylic group, which should allow them to better penetrate through biomembranes by passive diffusion. Because of the urgent medical need to develop new treatments for neonatal seizures and their adverse outcome, we evaluated the effects of azosemide and torasemide, administered alone or in combination with phenobarbital or midazolam, in a rat model of birth asphyxia and neonatal seizures. Neither diuretic suppressed the seizures when administered alone but torasemide potentiated the anti-seizure effect of midazolam. Brain levels of torasemide were below those needed to inhibit NKCC1. In addition to suppressing seizures, the combination of torasemide and midazolam, but not midazolam alone, prevented the cognitive impairment of the post-asphyxial rats at 3 months after asphyxia. Furthermore, aberrant mossy fiber sprouting in the hippocampus was more effectively prevented by the combination. We assume that either an effect on NKCC1 at the blood-brain barrier and/or cells in the periphery or the NKCC2-mediated diuretic effect of torasemide are involved in the present findings. Our data suggest that torasemide may be a useful option for improving the treatment of neonatal seizures and their adverse outcome.


Asunto(s)
Epilepsia , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Ratas , Animales , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Bumetanida/uso terapéutico , Bumetanida/farmacología , Torasemida , Furosemida/uso terapéutico , Furosemida/farmacología , Asfixia , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Diuréticos/uso terapéutico , Diuréticos/farmacología
4.
Epilepsy Behav ; 114(Pt A): 107616, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279441

RESUMEN

Because of its potent inhibitory effect on the Na+-K+-2Cl- symporter isotype 1 (NKCC1) in brain neurons, bumetanide has been tested with varying results for treatment of seizures that potentially evolve as a consequence of abnormal NKCC1 activity. However, because of its physicochemical properties, bumetanide only poorly penetrates into the brain. We previously demonstrated that NKCC1 can be also inhibited by azosemide and torasemide, which lack the carboxyl group of bumetanide and thus should be better brain-permeable. Here we studied the brain distribution kinetics of azosemide and torasemide in comparison with bumetanide in mice and used pharmacokinetic-pharmacodynamic modelling to determine whether the drugs reach NKCC1-inhibitory brain concentrations. All three drugs hardly distributed into the brain, which seemed to be the result of probenecid-sensitive efflux transport at the blood-brain barrier. When fractions unbound in plasma and brain were determined by equilibrium dialysis, only about 6-17% of the brain drug concentration were freely available. With the systemic doses (10 mg/kg i.v.) used, free brain concentrations of bumetanide and torasemide were in the NKCC1-inhibitory concentration range, while levels of azosemide were slightly below this range. However, all three drugs exhibited free plasma levels that would be sufficient to block NKCC1 at the apical membrane of brain capillary endothelial cells. These data suggest that azosemide and torasemide are interesting alternatives to bumetanide for treatment of seizures involving abnormal NKCC1 functionality, particularly because of their longer duration of action and their lower diuretic potency, which is an advantage in patients with seizures.


Asunto(s)
Bumetanida , Células Endoteliales , Animales , Encéfalo/metabolismo , Bumetanida/uso terapéutico , Células Endoteliales/metabolismo , Humanos , Ratones , Convulsiones/tratamiento farmacológico , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Miembro 2 de la Familia de Transportadores de Soluto 12 , Sulfanilamidas , Torasemida
5.
Epilepsia ; 62(1): 269-278, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33140458

RESUMEN

OBJECTIVES: The loop diuretic bumetanide has been proposed previously as an adjunct treatment for neonatal seizures because bumetanide is thought to potentiate the action of γ-aminobutyric acid (GABA)ergic drugs such as phenobarbital by preventing abnormal intracellular accumulation of chloride and the subsequent "GABA shift." However, a clinical trial in neonates failed to demonstrate such a synergistic effect of bumetanide, most likely because this drug only poorly penetrates into the brain. This prompted us to develop lipophilic prodrugs of bumetanide, such as the N,N-dimethylaminoethyl ester of bumetanide (DIMAEB), which rapidly enter the brain where they are hydrolyzed by esterases to the parent compound, as demonstrated previously by us in adult rodents. However, it is not known whether esterase activity in neonates is sufficient to hydrolyze ester prodrugs such as DIMAEB. METHODS: In the present study, we examined whether esterases in neonatal serum of healthy term infants are capable of hydrolyzing DIMAEB to bumetanide and whether this activity is different from the serum of adults. Furthermore, to extrapolate the findings to brain tissue, we performed experiments with brain tissue and serum of neonatal and adult rats. RESULTS: Serum from 1- to 2-day-old infants was capable of hydrolyzing DIMAEB to bumetanide at a rate similar to that of serum from adult individuals. Similarly, serum and brain tissue of neonatal rats rapidly hydrolyzed DIMAEB to bumetanide. SIGNIFICANCE: These data provide a prerequisite for further evaluating the potential of bumetanide prodrugs as add-on therapy to phenobarbital and other antiseizure drugs as a new strategy for improving pharmacotherapy of neonatal seizures.


Asunto(s)
Encéfalo/enzimología , Bumetanida/metabolismo , Esterasas , Ésteres/metabolismo , Profármacos/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Ratas , Suero/enzimología , Suero/metabolismo
6.
Epilepsy Res ; 108(10): 1719-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25458535

RESUMEN

Ethanol is commonly used as a solvent in injectable formulations of poorly water-soluble drugs. The concentrations of ethanol in such formulations are generally considered reasonably safe. It is long known that ethanol can potentiate central effects of sedatives and tranquillizers, particularly the benzodiazepines, most likely as a result of a synergistic interaction at the GABAA receptor. However, whether this occurs at the low systemic doses of ethanol resulting from its use as solvent in parenteral formulations of benzodiazepines is not known. In the present study we evaluated whether a commercial ethanol-containing aqueous solution of diazepam exerts more potent anti-seizure effects than an aqueous solution of diazepam hydrochloride or an aqueous emulsion of this drug in the intrahippocampal kainate model of temporal lobe epilepsy in mice. Spontaneous epileptic seizures in this model are known to be resistant to major antiepileptic drugs. Administration of the ethanol-containing formulation of diazepam caused an almost complete suppression of seizures. This was not seen when the same dose (5 mg/kg) of diazepam was administered as aqueous solution or emulsion, although all three diazepam formulations resulted in similar drug and metabolite concentrations in plasma. Our data demonstrate that ethanol-containing solutions of diazepam are superior to block difficult-to-treat seizures to other formulations of diazepam. To our knowledge, this has not been demonstrated before and, if this finding can be translated to humans, may have important consequences for emergency treatment of acute seizures, series of seizures, and initial treatment of status epilepticus in patients.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Diazepam/administración & dosificación , Etanol , Convulsiones/tratamiento farmacológico , Solventes , Animales , Anticonvulsivantes/sangre , Anticonvulsivantes/química , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Diazepam/sangre , Diazepam/química , Modelos Animales de Enfermedad , Composición de Medicamentos , Sinergismo Farmacológico , Electroencefalografía , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/fisiopatología , Etanol/administración & dosificación , Etanol/sangre , Femenino , Ácido Kaínico , Ratones , Nordazepam/sangre , Oxazepam/sangre , Convulsiones/fisiopatología , Solventes/química , Solventes/farmacocinética , Temazepam/sangre , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...