RESUMEN
Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NOx), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO2), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NOx emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NOx from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO2) and ozone (O3) was lower for higher ethanol content in the fuel. In the U.S. car, NO2 and O3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. IMPLICATIONS: The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of its use, it is important to understand its effect on urban pollution. There is a controversy on whether there is a reduction or increase in PM emission when using ethanol blends. Primary emissions of THC, CO, CO2, NOx, and NMHC for both cars decreased as the fraction of ethanol in gasoline increased. Using a photochemical chamber, the authors have found a decrease in the formation of secondary particles and the time required to form secondary PM is longer when using higher ethanol blends.
Asunto(s)
Contaminantes Atmosféricos/química , Biocombustibles/análisis , Etanol/análisis , Emisiones de Vehículos/análisis , Aerosoles , Automóviles , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Gasolina/análisis , Hidrocarburos/análisis , Óxidos de Nitrógeno/análisis , Ozono/química , Material Particulado/análisisRESUMEN
The size distribution of particles has been studied in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and a comparison with black carbon was performed. Two sites are located near busy streets in Santiago and the other site is located in a rural area about 40 km west of Santiago with little influence from vehicles, but large influence from wood burning. The campaign lasted 1 or 2 weeks in each site. We have divided the particle size measurements into four groups (10-39 nm, 40-62 nm, 63-174 nm, and 175-700 nm) in order to compare with the carbon monitor. In the sites near the street, black carbon has a high correlation (R = 0.85) with larger particles (175-700 nm). The correlation decreased when black carbon was compared with smaller particles, having very small correlation with the smallest sizes (10-39 nm). In the rural site, black carbon also has a high correlation (R = 0.86) with larger particles (175-700 nm), but the correlation between black carbon and the finest particles (10-39 nm) decreases to near 0. These measurements are an indication that wood burning does not generate particles smaller than -50 nm. In the urban sites, particle size distribution is peaked toward smaller particles (10-39 nm) only during rush hours, but at other times, particles size distribution is peaked toward larger sizes. When solar radiation was high, evidence of secondary particle formation was seen in the rural site, but not in the urban sites. The correlation between the number of secondary particles and solar radiation was R2 = 0.46, indicating that it there may be other variables that play a role in ultrafine particle formation. Implications: A study of the size distribution of particles and black carbon concentration in two street sites and one rural site shows that in the last site the number of particles ultrafine particles (d < 40 nm) is 10 times lower but the number of larger particles is about 2 times lower. Thus, the rural site has less of the particles that are more dangerous to health. The number ofultrafine particles is mostly associated with traffic, while the number of larger particles is associated with wood burning and other sources. Wood burning does not generate particles smaller than -50 nm.
Asunto(s)
Contaminantes Atmosféricos/química , Carbono/química , Tamaño de la Partícula , Material Particulado/química , Remodelación Urbana , Chile , Ritmo Circadiano , Monitoreo del Ambiente , Hollín , Factores de Tiempo , Emisiones de Vehículos/análisis , VientoRESUMEN
We have designed and built a compact, low-cost automated system to measure the optical absorption coefficient of air. Because most of the light absorption is due to black carbon, this method is a direct measure of the amount of black carbon in the atmosphere. The equipment was used to measure absorption over a period of one year in a central area of Santiago. Our results show a strong correlation with the daily traffic pattern. The highest value of the absorption coefficient during most of the year occurs during the morning rush hour (0700-0800), and the lowest value either early in the morning (0300-0500) or in the afternoon (1400-1700). The absorption coefficient also shows a strong dependence with the season of the year, with values 10-20 times higher in winter than in summer. The data show that, during most of the year, the amount of black carbon present in the atmosphere is due to traffic. At night, during winter, the high concentration of black carbon is due to the temperature inversion effect.