Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111342

RESUMEN

Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

2.
J Chem Inf Model ; 61(12): 6094-6106, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34806382

RESUMEN

SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.


Asunto(s)
Productos Biológicos , COVID-19 , Antivirales/farmacología , Productos Biológicos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , SARS-CoV-2
3.
J Mol Recognit ; 21(3): 190-204, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18438971

RESUMEN

Apoptosis, also called programmed cell death, is a conserved mechanism inherent to all cells that sentences them to death when they receive the appropriate external stimuli. Inhibitor of apoptosis proteins (IAPs) are a family of regulatory proteins that suppress such cell death. XIAP is the most commonly studied member of the IAP family. It binds to and inhibits Caspases, an important family of apoptotic proteases. In addition, XIAP over-expression has been detected in numerous types of cancer. Smac/DIABLO, a mitochondrial protein that binds to IAPs and promotes Caspase activation, has the opposite action to XIAP and can be considered a key protein in the regulation of IAPs. Survivin, the smallest IAP protein, has received a lot of attention due to its specific expression in many cancer cell lines. It has been shown to interact with Smac/DIABLO, even though the structure of this complex has not yet been reported.We analysed the protein-protein interactions appearing in the Smac/DIABLO-XIAP and Smac/DIABLO-Survivin complexes fully, using molecular dynamics simulations. This information is a first step towards the design of Smac/DIABLO peptidomimetics that could be used as innovative therapeutic agents for the treatment of malignancy. Our results complement the experimental interactions described for the first complex and provide a detailed description for the second. We show that Smac/DIABLO interacts in a similar way with both targets through its amino terminal residues. In addition, we identify a pharmacophore formed by eight stable protein-protein interactions for the XIAP complex and seven stable protein-protein interactions for the Survivin complex, which describe the whole contact surface. This information is used to suggest the binding mode of embelin, the first non-peptidic inhibitor of XIAP, and two of its derivatives. Molecular docking and molecular dynamics simulations were also carried out to describe ligand and receptor flexibility. Finally, an MMGBSA protocol was used to obtain a more quantitative description of the binding in all the complexes studied.


Asunto(s)
Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Benzoquinonas/química , Simulación por Computador , Humanos , Enlace de Hidrógeno , Proteínas Inhibidoras de la Apoptosis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Proteínas Asociadas a Microtúbulos/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Unión Proteica , Electricidad Estática , Survivin , Termodinámica , Proteína Inhibidora de la Apoptosis Ligada a X/química , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...