Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1908, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019898

RESUMEN

Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.


Asunto(s)
Phaseolus , Humanos , Phaseolus/genética , Variación Genética , Genotipo , Evolución Biológica , Hibridación Genética
2.
Front Plant Sci ; 14: 1125672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077626

RESUMEN

Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.

3.
Annu Rev Food Sci Technol ; 14: 183-202, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36623924

RESUMEN

Despite the almost universal acceptance of the phrase "you are what you eat," investment in understanding diet-based nutrition to address human health has been dwarfed compared to that for medicine-based interventions. Moreover, traditional breeding has focused on yield to the detriment of nutritional quality, meaning that although caloric content has remained high, the incidence of nutritional deficiencies and accompanying diseases (so-called hidden hunger) has risen dramatically. We review how genome sequencing coupled with metabolomics can facilitate the screening of genebank collections in the search for superior alleles related to the nutritional quality of crops. We argue that the first examples are very promising, suggesting that this approach could benefit broader ranges of crops and compounds with known relevance for human health. We argue that this represents anapproach complementary to metabolic engineering by transgenesis or gene editing that could be used to reverse some of the losses incurred through a recent focus on breeding for yield, although we caution that ensuring such approaches are not (re)introducing antinutrients is also necessary.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Humanos , Productos Agrícolas/genética , Valor Nutritivo , Ingeniería Metabólica , Metabolómica
4.
Front Plant Sci ; 13: 965287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311121

RESUMEN

Drought events or the combination of drought and heat conditions are expected to become more frequent due to global warming, and wheat yields may fall below their long-term average. One way to increase climate-resilience of modern high-yielding varieties is by their genetic improvement with beneficial alleles from crop wild relatives. In the present study, the effect of two beneficial QTLs introgressed from wild emmer wheat and incorporated in the three wheat varieties BarNir, Zahir and Uzan was studied under well-watered conditions and under drought stress using non-destructive High-throughput Phenotyping (HTP) throughout the life cycle in a single pot-experiment. Plants were daily imaged with RGB top and side view cameras and watered automatically. Further, at two time points, the quantum yield of photosystem II was measured with a top view FluorCam. The QTL carrying near isogenic lines (NILs) were compared with their corresponding parents by t-test for all non-invasively obtained traits and for the manually determined agronomic and yield parameters. Data quality of phenotypic traits (repeatability) in the controlled HTP experiment was above 85% throughout the life cycle and at maturity. Drought stress had a strong effect on growth in all wheat genotypes causing biomass reduction from 2% up to 70% at early and late points in the drought period, respectively. At maturity, the drought caused 47-55% decreases in yield-related traits grain weight, straw weight and total biomass and reduced TKW by 10%, while water use efficiency (WUE) increased under drought by 29%. The yield-enhancing effect of the introgressed QTLs under drought conditions that were previously demonstrated under field/screenhouse conditions in Israel, could be mostly confirmed in a greenhouse pot experiment using HTP. Daily precision phenotyping enabled to decipher the mode of action of the QTLs in the different genetic backgrounds throughout the entire wheat life cycle. Daily phenotyping allowed a precise determination of the timing and size of the QTLs effect (s) and further yielded information about which image-derived traits are informative at which developmental stage of wheat during the entire life cycle. Maximum height and estimated biovolume were reached about a week after heading, so experiments that only aim at exploring these traits would not need a longer observation period. To obtain information on different onset and progress of senescence, the CVa curves represented best the ongoing senescence of plants. The QTL on 7A in the BarNir background was found to improve yield under drought by increased biomass growth, a higher photosynthetic performance, a higher WUE and a "stay green effect."

5.
Theor Appl Genet ; 135(3): 755-776, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34283259

RESUMEN

KEY MESSAGE: We present a comprehensive survey of cytogenetic and genomic diversity of the GGAtAt genepool of wheat, thereby unlocking these plant genetic resources for wheat improvement. Wheat yields are stagnating around the world and new sources of genes for resistance or tolerances to abiotic traits are required. In this context, the tetraploid wheat wild relatives are among the key candidates for wheat improvement. Despite its potential huge value for wheat breeding, the tetraploid GGAtAt genepool is largely neglected. Understanding the population structure, native distribution range, intraspecific variation of the entire tetraploid GGAtAt genepool and its domestication history would further its use for wheat improvement. The paper provides the first comprehensive survey of genomic and cytogenetic diversity sampling the full breadth and depth of the tetraploid GGAtAt genepool. According to the results obtained, the extant GGAtAt genepool consists of three distinct lineages. We provide detailed insights into the cytogenetic composition of GGAtAt wheats, revealed group- and population-specific markers and show that chromosomal rearrangements play an important role in intraspecific diversity of T. araraticum. The origin and domestication history of the GGAtAt lineages is discussed in the context of state-of-the-art archaeobotanical finds. We shed new light on the complex evolutionary history of the GGAtAt wheat genepool and provide the basis for an increased use of the GGAtAt wheat genepool for wheat improvement. The findings have implications for our understanding of the origins of agriculture in southwest Asia.


Asunto(s)
Domesticación , Triticum , Variación Genética , Fenotipo , Fitomejoramiento , Tetraploidía , Triticum/genética
6.
Trends Plant Sci ; 27(3): 217-219, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865982

RESUMEN

Genome sequences provide an unprecedented resource to rapidly develop modern crops. A recent paper by Varshney et al. provides genome variation maps of 3366 chickpea accessions. Here, we highlight how this breakthrough research can fundamentally change breeding practices of chickpea and potentially other crops.


Asunto(s)
Cicer , Cicer/genética , Productos Agrícolas/genética , Genoma de Planta/genética , Genómica , Fitomejoramiento
7.
Biology (Basel) ; 10(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34681081

RESUMEN

Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.

9.
Plant J ; 108(3): 646-660, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34427014

RESUMEN

Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.


Asunto(s)
Productos Agrícolas/genética , Fabaceae/genética , Banco de Semillas , Bases de Datos Genéticas , Europa (Continente) , Genotipo , Cooperación Internacional , Semillas/genética
10.
Curr Protoc ; 1(7): e191, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34242495

RESUMEN

Well-characterized genetic resources are fundamental to maintain and provide the various genotypes for pre-breeding programs for the production of new cultivars (e.g., wild relatives, unimproved material, landraces). The aim of the current article is to provide protocols for the characterization of the genetic resources of two lupin crop species: the European Lupinus albus and the American Lupinus mutabilis. Intelligent nested collections of lupins derived from homozygous lines (single-seed descent) are being developed, established, and exploited using cutting-edge approaches for genotyping, phenotyping, data management, and data analysis within the INCREASE project (EU Horizon 2020). This will allow us to predict the phenotypic performance of genotyped lines, and will further boost research and development in lupins. Lupins stand out due to their high-quality seed protein (∼40% of seed dry weight) and other primary components in the seeds, which include fatty acids, dietary fiber, and minerals. The potential of lupins as a crop is highlighted by the multiple benefits of plant-based food in terms of food security, nutrition, human health, and sustainable production. The use of lupins in foods, along with other well-studied and widely used food legumes, will also provide a greatly diversified plant-based food palette to meet the Global Goals for Sustainable Development to improve people's lives by 2030. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Lupin seed phenotypic descriptors Basic Protocol 2: Lupin seed imaging Basic Protocol 3: Standardized phenotypic characterization of lupin genetic resources grown towards primary seed increase (development of single-seed descent genetic resources).


Asunto(s)
Lupinus , Fibras de la Dieta , Genotipo , Humanos , Lupinus/genética , Fitomejoramiento , Semillas/genética
11.
Curr Protoc ; 1(5): e133, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34004060

RESUMEN

The optimal use of legume genetic resources represents a key prerequisite for coping with current agriculture-related societal challenges, including conservation of agrobiodiversity, agricultural sustainability, food security, and human health. Among legumes, the common bean (Phaseolus vulgaris) is the most economically important for human consumption, and its evolutionary trajectories as a species have been crucial to determining the structure and level of its present and available genetic diversity. Genomic advances are considerably enhancing the characterization and assessment of important genetic variants. For this purpose, the development and availability of, and access to, well-described and efficiently managed genetic resource collections that comprise pure lines derived by single-seed-descent cycles will be paramount for the use of the reservoir of common bean variability and for the advanced breeding of legume crops. This is one of the main aims of the new and challenging European project INCREASE, which is the implementation of Intelligent Collections with appropriate standardized protocols that must be characterized, maintained, and made available, along with the related data, to users such as breeders and researchers. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterizing common bean seeds for seed trait descriptors Basic Protocol 2: Bean seed imaging Basic Protocol 3: Characterizing bean lines for plant trait descriptors specific for common bean Primary Seed Increase.


Asunto(s)
Phaseolus , Humanos , Endogamia , Phaseolus/genética , Fenotipo , Fitomejoramiento , Semillas/genética
12.
Trends Plant Sci ; 26(6): 631-649, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893045

RESUMEN

Over the past decade, genomics-assisted breeding (GAB) has been instrumental in harnessing the potential of modern genome resources and characterizing and exploiting allelic variation for germplasm enhancement and cultivar development. Sustaining GAB in the future (GAB 2.0) will rely upon a suite of new approaches that fast-track targeted manipulation of allelic variation for creating novel diversity and facilitate their rapid and efficient incorporation in crop improvement programs. Genomic breeding strategies that optimize crop genomes with accumulation of beneficial alleles and purging of deleterious alleles will be indispensable for designing future crops. In coming decades, GAB 2.0 is expected to play a crucial role in breeding more climate-smart crop cultivars with higher nutritional value in a cost-effective and timely manner.


Asunto(s)
Genoma de Planta , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta/genética , Genómica
13.
Front Plant Sci ; 11: 604781, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505414

RESUMEN

Genome-wide predictions are a powerful tool for predicting trait performance. Against this backdrop we aimed to evaluate the potential and limitations of genome-wide predictions to inform the barley collection of the Federal ex situ Genebank for Agricultural and Horticultural Crops with phenotypic data on complex traits including flowering time, plant height, thousand grain weight, as well as on growth habit and row type. We used previously published sequence data, providing information on 306,049 high-quality SNPs for 20,454 barley accessions. The prediction abilities of the two unordered categorical traits row type and growth type as well as the quantitative traits flowering time, plant height and thousand grain weight were investigated using different cross validation scenarios. Our results demonstrate that the unordered categorical traits can be predicted with high precision. In this way genome-wide prediction can be routinely deployed to extract information pertinent to the taxonomic status of gene bank accessions. In addition, the three quantitative traits were also predicted with high precision, thereby increasing the amount of information available for genotyped but not phenotyped accessions. Deeply phenotyped core collections, such as the barley 1,000 core set of the IPK Gatersleben, are a promising training population to calibrate genome-wide prediction models. Consequently, genome-wide predictions can substantially contribute to increase the attractiveness of gene bank collections and help evolve gene banks into bio-digital resource centers.

14.
Front Plant Sci ; 10: 1307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708943

RESUMEN

With ongoing climate change, drought events are becoming more frequent and will affect biomass formation when occurring during pre-flowering stages. We explored growth over time under such a drought scenario, via non-invasive imaging and revealed the underlying key genetic factors in spring barley. By comparing with well-watered conditions investigated in an earlier study and including information on timing, QTL could be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The influence of phenology on biomass formation increased under drought. Accordingly, the main QTL during recovery was the region of HvPPD-H1. The most important constitutive QTL for late biomass was located in the vicinity of HvDIM, while the main locus for seedling biomass was the HvWAXY region. The disappearance of QTL marked the genetic architecture of tiller number. The most important constitutive QTL was located on 6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities for genetic manipulation to stabilize biomass and tiller number under drought conditions and thereby also grain yield.

15.
J Plant Physiol ; 241: 153029, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31499444

RESUMEN

High affinity potassium transporters (HKT) are recognized as important genes for crop salt tolerance improvement. In this study, we investigated HvHKT1;5 as a candidate gene for a previously discovered quantitative trait locus that controls shoot Na+ and Na+/K+ ratio in salt-stressed barley lines on a hydroponic system. Two major haplotype groups could be distinguished for this gene in a barley collection of 95 genotypes based on the presence of three intronic insertions; a designated haplotype group A (HGA, same as reference sequence) and haplotype group B (HGB, with insertions). HGB was associated with a much stronger root expression of HKT1;5 compared to HGA, and consequently higher K+ and lower Na+ and Cl- concentrations and a lower Na+/K+ ratio in the shoots three weeks after exposure to 200 mM NaCl. Our experimental results suggest that allelic variation in the promoter region of the HGB gene is linked to the three insertions may be responsible for the observed increase in expression of HvHKT1;5 alleles after one week of salt stress induction. This study shows that in barley - similar to wheat and rice - HKT1;5 is an important contributor to natural variation in shoot Na+ exclusion.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Estrés Salino/fisiología , Sodio/metabolismo , Alelos , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/genética , Hordeum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Transcriptoma
16.
Sci Data ; 6(1): 137, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358775

RESUMEN

Genebanks are valuable sources of genetic diversity, which can help to cope with future problems of global food security caused by a continuously growing population, stagnating yields and climate change. However, the scarcity of phenotypic and genotypic characterization of genebank accessions severely restricts their use in plant breeding. To warrant the seed integrity of individual accessions during periodical regeneration cycles in the field phenotypic characterizations are performed. This study provides non-orthogonal historical data of 12,754 spring and winter wheat accessions characterized for flowering time, plant height, and thousand grain weight during 70 years of seed regeneration at the German genebank. Supported by historical weather observations outliers were removed following a previously described quality assessment pipeline. In this way, ready-to-use processed phenotypic data across regeneration years were generated and further validated. We encourage international and national genebanks to increase their efforts to transform into bio-digital resource centers. A first important step could consist in unlocking their historical data treasures that allows an educated choice of accessions by scientists and breeders.


Asunto(s)
Semillas/genética , Triticum/genética , Conservación de los Recursos Naturales , Productos Agrícolas/genética , Modelos Estadísticos , Fenotipo , Banco de Semillas , Tiempo (Meteorología)
17.
Nat Genet ; 51(7): 1076-1081, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31253974

RESUMEN

Genebanks have the long-term mission of preserving plant genetic resources as an agricultural legacy for future crop improvement. Operating procedures for seed storage and plant propagation have been in place for decades, but there is a lack of effective means for the discovery and transfer of beneficial alleles from landraces and wild relatives into modern varieties. Here, we review the prospects of using molecular passport data derived from genomic sequence information as a universal monitoring tool at the single-plant level within and between genebanks. Together with recent advances in breeding methodologies, the transformation of genebanks into bio-digital resource centers will facilitate the selection of useful genetic variation and its use in breeding programs, thus providing easy access to past crop diversity. We propose linking catalogs of natural genetic variation and enquiries into biological mechanisms of plant performance as a long-term joint research goal of genebanks, plant geneticists and breeders.


Asunto(s)
Productos Agrícolas/genética , Bases de Datos Genéticas , Genes de Plantas/genética , Genoma de Planta , Genómica/métodos , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple
18.
J Exp Bot ; 70(19): 5115-5130, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31145789

RESUMEN

Higher head rice yield (HRY), which represents the proportion of intact grains that survive milling, and lower grain chalkiness (opacity) are key quality traits. We investigated the genetic basis of HRY and chalkiness in 320 diverse resequenced accessions of indica rice with integrated single- and multi-locus genome-wide association studies using 2.26 million single-nucleotide polymorphisms. We identified novel haplotypes that underly higher HRY on chromosomes 3, 6, 8, and 11, and that lower grain chalkiness in a fine-mapped region on chromosome 5. Whole-genome sequencing of 92 IRRI breeding lines was performed to identify the genetic variants of HRY and chalkiness. Rare and novel haplotypes were found for lowering chalkiness, but missing alleles hindered progress towards enhancing HRY in breeding material. The novel haplotypes that we identified have potential use in breeding programs aimed at improving these important traits in the rice crop.


Asunto(s)
Grano Comestible/fisiología , Estudio de Asociación del Genoma Completo , Oryza/fisiología , Fenotipo , Grano Comestible/genética , Haplotipos , Oryza/genética , Polimorfismo de Nucleótido Simple
19.
BMC Plant Biol ; 19(1): 216, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122195

RESUMEN

BACKGROUND: Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. RESULTS: A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. CONCLUSIONS: This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.


Asunto(s)
Sequías , Genes de Plantas/fisiología , Genoma de Planta/genética , Hordeum/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genotipo , Hordeum/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo
20.
Front Plant Sci ; 10: 400, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001309

RESUMEN

Breeding new crop cultivars with efficient root systems carries great potential to enhance resource use efficiency and plant adaptation to unstable climates. Here, we evaluated the natural variation of root system architectural traits in a diverse spring barley association panel and conducted genome-wide association mapping to identify genomic regions associated with root traits. For six studied traits, root system depth, root spreading angle, seminal root number, total seminal root length, and average seminal root length 1.9- to 4.2-fold variations were recorded. Using a mixed linear model, 55 QTLs were identified cumulatively explaining between 12.1% of the phenotypic variance for seminal root number to 48.1% of the variance for root system depth. Three major QTLs controlling root system depth, root spreading angle and total seminal root length were found on Chr 2H (56.52 cM), Chr 3H (67.92 cM), and Chr 2H (76.20 cM) and explained 12.4%, 18.4%, and 22.2% of the phenotypic variation, respectively. Meta-analysis and allele combination analysis indicated that root system depth and root spreading angle are valuable candidate traits for improving grain yield by pyramiding of favorable alleles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...