Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Biol Macromol ; 252: 126529, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633557

RESUMEN

Although latex fluids are found in >20,000 plant species, the biochemical composition and biological function of their proteins are still poorly explored. Thus, this work aimed to conduct a proteomic analysis of Cryptostegia grandiflora latex (CgLP) for subsequent purification and characterization of an antifungal protein. After 2D-SDS-PAGE and mass spectrometry, 27 proteins were identified in CgLP, including a polygalacturonase inhibitor, cysteine peptidases, pathogenesis-related proteins (PR-4), and osmotins. Then, two osmotin isoforms (CgOsm) were purified, and a unique N-terminal sequence was determined (1ATFDIRSNCPYTVWAAAVPGGGRRLDRGQTWTINVAPGTA40). The PCR products revealed a cDNA sequence of 609 nucleotides for CgOsm, which encoded a polypeptide with 203 amino acid residues. The structure of CgOsm has features of typical osmotin or thaumatin-like proteins (TLPs), such as 16 conserved Cys residues, REDDD and FF motifs, an acidic cleft, and three main domains. Atomic force microscopy (AFM) and bioinformatics suggested that CgOsm is associated with three chain units. This result was interesting since the literature describes osmotins and TLPs as monomers. AFM also showed that Fusarium falciforme spores treated with CgOsm were drastically damaged. Therefore, it is speculated that CgOsm forms pores in the membrane of these cells, causing the leakage of cytoplasmic content.


Asunto(s)
Apocynaceae , Látex , Látex/química , Proteómica , Proteínas de Plantas/química , Isoformas de Proteínas/genética , Apocynaceae/química
2.
Phytochemistry ; 180: 112527, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33007618

RESUMEN

A partial cDNA sequence from Anacardium occidentale CCP 76 was obtained, encoding a GH19 chitinase (AoChi) belonging to class VI. AoChi exhibits distinct structural features in relation to previously characterized plant GH19 chitinases from classes I, II, IV and VII. For example, a conserved Glu residue at the catalytic center of typical GH19 chitinases, which acts as the proton donor during catalysis, is replaced by a Lys residue in AoChi. To verify if AoChi is a genuine chitinase or is a chitinase-like protein that has lost its ability to degrade chitin and inhibit the growth of fungal pathogens, the recombinant protein was expressed in Pichia pastoris, purified and biochemically characterized. Purified AoChi (45 kDa apparent molecular mass) was able to degrade colloidal chitin, with optimum activity at pH 6.0 and at temperatures from 30 °C to 50 °C. AoChi activity was completely lost when the protein was heated at 70 °C for 1 h or incubated at pH values of 2.0 or 10.0. Several cation ions (Al3+, Cd2+, Ca2+, Pb2+, Cu2+, Fe3+, Mn2+, Rb+, Zn2+ and Hg2+), chelating (EDTA) and reducing agents (DTT, ß-mercaptoethanol) and the denaturant SDS, drastically reduced AoChi enzymatic activity. AoChi chitinase activity fitted the classical Michaelis-Menten kinetics, although turnover number and catalytic efficiency were much lower in comparison to typical GH19 plant chitinases. Moreover, AoChi inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, causing several alterations in hyphae morphology. Molecular docking of a chito-oligosaccharide in the substrate-binding cleft of AoChi revealed that the Lys residue (theoretical pKa = 6.01) that replaces the catalytic Glu could act as the proton donor during catalysis.


Asunto(s)
Anacardium , Quitinasas , Antifúngicos/farmacología , Quitina , Quitinasas/genética , Simulación del Acoplamiento Molecular
3.
Int J Biol Macromol ; 165(Pt A): 1482-1495, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33017605

RESUMEN

A chitosanase (CvCsn46) from Chromobacterium violaceum ATCC 12472 was produced in Escherichia coli, purified, and partially characterized. When subjected to denaturing polyacrylamide gel electrophoresis, the enzyme migrated as two protein bands (38 and 36 kDa apparent molecular masses), which were both identified as CvCsn46 by mass spectrometry. The enzyme hydrolyzed colloidal chitosan, with optimum catalytic activity at 50 °C, and two optimum pH values (at pH 6.0 and pH 11.0). The chitosanolytic activity of CvCsn46 was enhanced by some ions (Ca2+, Co2+, Cu2+, Sr2+, Mn2+) and DTT, whereas Fe2+, SDS and ß-mercaptoethanol completely inhibited its activity. CvCsn46 showed a non-Michaelis-Menten kinetics, characterized by a sigmoidal velocity curve (R2 = 0.9927) and a Hill coefficient of 3.95. ESI-MS analysis revealed that the hydrolytic action of CvCsn46 on colloidal chitosan generated a mixture of low molecular mass chitooligosaccharides, containing from 2 to 7 hexose residues, as well as D-glucosamine. The chitosan oligomers generated by CvCsn46 inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, significantly reducing mycelium extension and inducing hyphal morphological alterations, as observed by scanning electron microscopy. CvCsn46 was characterized as a versatile biocatalyst that produces well-defined chitooligosaccharides, which have potential to control fungi that cause important crop diseases.


Asunto(s)
Antifúngicos/química , Quitina/análogos & derivados , Chromobacterium/genética , Glicósido Hidrolasas/genética , Secuencia de Aminoácidos/genética , Quitina/biosíntesis , Quitina/química , Quitina/genética , Quitosano/química , Chromobacterium/enzimología , Escherichia coli/genética , Glicósido Hidrolasas/biosíntesis , Glicósido Hidrolasas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Peso Molecular , Oligosacáridos
4.
Protein Pept Lett ; 27(7): 593-603, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31994998

RESUMEN

BACKGROUND: Osmotin-Like Proteins (OLPs) have been purified and characterized from different plant tissues, including latex fluids. Besides its defensive role, tobacco osmotin seems to induce adiponectin-like physiological effects, acting as an agonist. However, molecular information about this agonistic effect on adiponectin receptors has been poorly exploited and other osmotins have not been investigated yet. OBJECTIVE AND METHODS: The present study involved the characterization of three OLPs from Plumeria rubra latex and molecular docking studies to evaluate the interaction between them and adiponectin receptors (AdipoR1 and AdipoR2). RESULTS: P. rubra Osmotin-Like Proteins (PrOLPs) exhibited molecular masses from 21 to 25 kDa and isoelectric points ranging from 4.4 to 7.7. The proteins have 16 cysteine residues, which are involved in eight disulfide bonds, conserved in the same positions as other plant OLPs. The threedimensional (3D) models exhibited the three typical domains of OLPs, and molecular docking analysis showed that two PrOLP peptides interacted with two adiponectin receptors similarly to tobacco osmotin peptide. CONCLUSION: As observed for tobacco osmotin, the latex osmotins of P. rubra exhibited compatible interactions with adiponectin receptors. Therefore, these plant defense proteins (without known counterparts in humans) are potential tools to study modulation of glucose metabolism in type II diabetes, where adiponectin plays a pivotal role in homeostasis.


Asunto(s)
Adiponectina/química , Apocynaceae/química , Simulación del Acoplamiento Molecular , Péptidos/química , Peptidomiméticos/química , Proteínas de Plantas/química , Humanos , Receptores de Adiponectina/química
5.
Food Chem ; 307: 125574, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648178

RESUMEN

This article reports the characterization and evaluation of the biotechnological potential of a cysteine protease purified from Calotropis procera (CpCP3). This enzyme was highly stable to different metal ions and was able to hydrolyze κ-casein similarly to bovine chymosin. Atomic force microscopy showed that the process of casein micelle aggregation induced by CpCP3 was similar to that caused by chymosin. The cheeses made using CpCP3 showed higher moisture content than those made with chymosin, but protein, fat, and ash were similar. The sensory analysis showed that cheeses made with CpCP3 had high acceptance index (>80%). In silico analysis predicted the presence of only two short allergenic peptides on the surface of CpCP3, which was highly susceptible to digestive enzymes and did not alter zebrafish embryos' morphology and development. Moreover, recombinant CpCP3 was expressed in Escherichia coli. All results support the biotechnological potential of CpCP3 as an alternative enzyme to chymosin.


Asunto(s)
Calotropis/enzimología , Caseínas/metabolismo , Queso , Proteasas de Cisteína/metabolismo , Animales , Bovinos , Quimosina/metabolismo , Hidrólisis , Látex/metabolismo , Proteínas de Plantas/metabolismo
6.
Phytochemistry ; 169: 112163, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31605904

RESUMEN

Cysteine peptidases (EC 3.4.22) are the most abundant enzymes in latex fluids. However, their physiological functions are still poorly understood, mainly related to defense against phytopathogens. The present study reports the cDNA cloning and sequencing of five undescribed cysteine peptidases from Calotropis procera (Aiton) Dryand (Apocynaceae) as well as some in silico analyses. Of these, three cysteine peptidases (CpCP1, CpCP2, and CpCP3) were purified. Their enzymatic kinetics were determined and they were assayed for their efficacy in inhibiting the hyphal growth of phytopathogenic fungi. The mechanism of action was investigated by fluorescence and atomic force microscopy as well as by induction of reactive oxygen species (ROS). The deduced amino acid sequences showed similar biochemical characteristics and high sequence homology with several other papain-like cysteine peptidases. Three-dimensional models showed two typical cysteine peptidase domains (L and R domains), forming a "V-shaped" active site containing the catalytic triad (Cys, His, and Asn). Proteolysis of CpCP1 was higher at pH 7.0, whereas for CpCP2 and CpCP3 it was higher at 7.5. All peptidases exhibited optimum activity at 35 °C and followed Michaelis-Menten kinetics. However, the major difference among them was that CpCP1 exhibited highest Vmax, Km, Kcat and catalytic efficiency. All peptidases were deleterious to the two fungi tested, with IC50 of around 50 µg/mL. The peptidases promoted membrane permeabilization, morphological changes with leakage of cellular content, and induction of ROS in F. oxysporum spores. These results corroborate the hypothesis that latex cysteine peptidases play a role in defense against fungi.


Asunto(s)
Antifúngicos/farmacología , Calotropis/enzimología , Proteasas de Cisteína/metabolismo , Fusarium/efectos de los fármacos , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/metabolismo , Biocatálisis , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Relación Dosis-Respuesta a Droga , Fusarium/metabolismo , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Alineación de Secuencia , Temperatura
7.
Plant Physiol Biochem ; 140: 68-77, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31085448

RESUMEN

Mo-CBP3 is a chitin-binding 2S albumin from Moringa oleifera. This seed storage protein is resistant to thermal denaturation and shows biological activities that might be of practical use, such as antifungal properties against Candida sp., a pathogen that causes candidiasis, and against Fusarium solani, a soil fungus that can cause diseases in plants and humans. Previous work has demonstrated that Mo-CBP3 is a mixture of isoforms encoded by members of a small multigene family. Mature Mo-CBP3 is a small protein (∼14 kDa), constituted by a small chain of approximately 4 kDa and a large chain of 8 kDa, which are held together by disulfide bridges. However, a more comprehensive picture on the spectrum of Mo-CBP3 isoforms which are found in mature seeds, is still lacking. In this work, genomic DNA fragments were obtained from M. oleifera leaves, cloned and completely sequenced, thus revealing new genes encoding Mo-CBP3. Moreover, mass spectrometry analysis showed that the mature protein is a complex mixture of isoforms with a remarkable number of molecular mass variants. Using computational predictions and calculations, most (∼86%) of the experimentally determined masses were assigned to amino acid sequences deduced from DNA fragments. The results suggested that the complex mixture of Mo-CBP3 isoforms originates from proteins encoded by closely related genes, whose products undergo different combinations of distinct post-translational modifications, including cleavage at the N- and C-terminal ends of both subunits, cyclization of N-terminal Gln, as well as Pro hydroxylation, Ser/Thr phosphorylation, and Met oxidation.


Asunto(s)
Moringa oleifera/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Humanos , Proteínas de Plantas/química , Isoformas de Proteínas/química , Procesamiento Proteico-Postraduccional
8.
Enzyme Microb Technol ; 126: 50-61, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31000164

RESUMEN

The biocontrol activity of some soil strains of Chromobacterium sp. against pathogenic fungi has been attributed to secreted chitinases. The aim of this work was to characterize biochemically a recombinant chitinase (CvChi47) from C. violaceum ATCC 12472 and to investigate its effects on phytopathogenic fungi. CvChi47 is a modular enzyme with 450 amino acid residues, containing a type I signal peptide at the N-terminal region, followed by one catalytic domain belonging to family 18 of the glycoside hydrolases, and two type-3 chitin-binding domains at the C-terminal end. The recombinant enzyme was expressed in Escherichia coli as a His-tagged protein and purified to homogeneity. The native signal peptide of CvChi47 was used to direct its secretion into the culture medium, from where the recombinant product was purified by affinity chromatography on chitin and immobilized metal. The purified protein showed an apparent molecular mass of 46 kDa, as estimated by denaturing polyacrylamide gel electrophoresis, indicating the removal of the signal peptide. CvChi47 was a thermostable protein, retaining approximately 53.7% of its activity when heated at 100 °C for 1 h. The optimum hydrolytic activity was observed at 60 °C and pH 5. The recombinant chitinase inhibited the conidia germination of the phytopathogenic fungi Fusarium oxysporum and F. guttiforme, hence preventing mycelial growth. Furthermore, atomic force microscopy experiments revealed a pronounced morphological alteration of the cell surface of conidia incubated with CvChi47 in comparison to untreated cells. Taken together, these results show the potential of CvChi47 as a molecular tool to control plant diseases caused by these Fusarium species.


Asunto(s)
Antifúngicos/farmacología , Quitinasas/metabolismo , Chromobacterium/enzimología , Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Quitinasas/química , Quitinasas/genética , Clonación Molecular , Estabilidad de Enzimas , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Temperatura
9.
Int J Biol Macromol ; 126: 1167-1176, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625353

RESUMEN

The germin-like protein (GLP) purified from Thevetia peruviana, Peruvianin-I, is the only one described as having proteolytic activity. Therefore, the goal of this study was to investigate the structural features responsible for its enzymatic activity. Although the amino acid sequence of Peruvianin-I showed high identity with other GLPs, it exhibited punctual mutations, which were responsible for the absence of oxalate oxidase activity. The phylogenetic analysis showed that Peruvianin-I does not belong to any classification of GLP subfamilies. Moreover, Peruvianin-I contains a catalytic triad found in all plant cysteine peptidases. Molecular docking simulations confirmed the role of the catalytic triad in its proteolytic activity. Synchrotron radiation circular dichroism assays confirmed that Peruvianin-I was stable at pH ranging from 5.0 to 8.0 and that it presented significant structural changes only above 60 °C. The addition of iodoacetamide caused changes in its native conformation, but only a slight effect was observed after adding a reducing agent. This study reports an unusual protein with germin-like structure, lacking typical oxalate oxidase activity. Instead, the proteolytic activity observed suggests that the protein is a cysteine peptidase. These structural peculiarities make Peruvianin­I an interesting model for further understanding of the action of laticifer fluids in plant defense.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteolisis , Thevetia/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Dicroismo Circular , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Filogenia , Inhibidores de Proteasas/farmacología , Sustancias Reductoras/química , Análisis de Secuencia de Proteína , Especificidad por Sustrato/efectos de los fármacos , Temperatura
10.
Int J Biol Macromol ; 117: 565-573, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847781

RESUMEN

Vicilins are 7S globulins which constitute the major seed storage proteins in leguminous species. Variant vicilins showing differential binding affinities for chitin have been implicated in the resistance and susceptibility of cowpea to the bruchid Callosobruchus maculatus. These proteins are members of the cupin superfamily, which includes a wide variety of enzymes and non-catalytic seed storage proteins. The cupin fold does not share similarity with any known chitin-biding domain. Therefore, it is poorly understood how these storage proteins bind to chitin. In this work, partial cDNA sequences encoding ß-vignin, the major component of cowpea vicilins, were obtained from developing seeds. Three-dimensional molecular models of ß-vignin showed the characteristic cupin fold and computational simulations revealed that each vicilin trimer contained 3 chitin-binding sites. Interaction models showed that chito-oligosaccharides bound to ß-vignin were stabilized mainly by hydrogen bonds, a common structural feature of typical carbohydrate-binding proteins. Furthermore, many of the residues involved in the chitin-binding sites of ß-vignin are conserved in other 7S globulins. These results support previous experimental evidences on the ability of vicilin-like proteins from cowpea and other leguminous species to bind in vitro to chitin as well as in vivo to chitinous structures of larval C. maculatus midgut.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Almacenamiento de Semillas/genética , Vigna/genética , Animales , Sitios de Unión , Quitina/química , Quitina/genética , Clonación Molecular , Escarabajos/patogenicidad , ADN Complementario/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/química , Unión Proteica , Proteínas de Almacenamiento de Semillas/química , Semillas/química , Semillas/genética , Vigna/crecimiento & desarrollo
11.
Molecules ; 22(10)2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946655

RESUMEN

Violacein is an indole compound, produced by Chromobacterium violaceum, a bacteria present in tropical and subtropical areas. Among its numerous biological activities, its antimicrobial potential stands out. This study aims to determine the antimicrobial activity of VIO on S. aureus in planktonic culture and biofilms. VIO showed excellent antimicrobial activity in inhibiting and killing S. aureus in planktonic cultures and biofilm formation. The minimum bactericidal concentration (5 µg/mL) of VIO caused the death of S. aureus after 3-4 h of exposure and the minimum inhibitory concentration (1.25 µg/mL) of VIO inhibited bacterial growth within the first 8 h of contact. Biofilm formation was also strongly inhibited by VIO (1.25 µg/mL), in contrast to the higher resistance verified for S. aureus in mature biofilm (40 µg/mL). The high bacterial metabolic activity favored VIO activity; however, the good activity observed during phases of reduced metabolism indicates that VIO action involves more than one mechanism. Thus, VIO is a promising molecule for the development of an antimicrobial drug for the eradication of S. aureus infections.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Indoles/farmacología , Plancton/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
12.
Front Microbiol ; 8: 980, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634471

RESUMEN

Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9) with 4.1% (m/m) sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45-37.90 and 155.84-260.29 µM, respectively. In addition, Mo-CBP2 (18.90 µM) increased the cell membrane permeabilization and reactive oxygen species production in C. albicans and promoted degradation of circular plasmid DNA (pUC18) from Escherichia coli. The data presented in this study highlight the potential use of Mo-CBP2 as an anticandidal agent, based on its ability to inhibit Candida spp. growth with apparently low toxicity on mammalian cells.

13.
Phytochemistry ; 139: 60-71, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28414935

RESUMEN

The genus Swartzia is a member of the tribe Swartzieae, whose genera constitute the living descendants of one of the early branches of the papilionoid legumes. Legume lectins comprise one of the main families of structurally and evolutionarily related carbohydrate-binding proteins of plant origin. However, these proteins have been poorly investigated in Swartzia and to date, only the lectin from S. laevicarpa seeds (SLL) has been purified. Moreover, no sequence information is known from lectins of any member of the tribe Swartzieae. In the present study, partial cDNA sequences encoding L-type lectins were obtained from developing seeds of S. simplex var. grandiflora. The amino acid sequences of the S. simplex grandiflora lectins (SSGLs) were only averagely related to the known primary structures of legume lectins, with sequence identities not greater than 50-52%. The SSGL sequences were more related to amino acid sequences of papilionoid lectins from members of the tribes Sophoreae and Dalbergieae and from the Cladratis and Vataireoid clades, which constitute with other taxa, the first branching lineages of the subfamily Papilionoideae. The three-dimensional structures of 2 representative SSGLs (SSGL-A and SSGL-E) were predicted by homology modeling using templates that exhibit the characteristic ß-sandwich fold of the L-type lectins. Molecular docking calculations predicted that SSGL-A is able to interact with D-galactose, N-acetyl-D-galactosamine and α-lactose, whereas SSGL-E is probably a non-functional lectin due to 2 mutations in the carbohydrate-binding site. Using molecular dynamics simulations followed by density functional theory calculations, the binding free energies of the interaction of SSGL-A with GalNAc and α-lactose were estimated as -31.7 and -47.5 kcal/mol, respectively. These findings gave insights about the carbohydrate-binding specificity of SLL, which binds to immobilized lactose but is not retained in a matrix containing D-GalNAc as ligand.


Asunto(s)
ADN Complementario/genética , Fabaceae/genética , Lectinas Tipo C/genética , Lectinas de Plantas/genética , Secuencia de Aminoácidos , Carbohidratos/análisis , Fabaceae/química , Galactosa/metabolismo , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Grupos de Población , Semillas/química
14.
Biochimie ; 135: 89-103, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28153694

RESUMEN

A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu2+ caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and Rfree values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested.


Asunto(s)
Antifúngicos/metabolismo , Quitinasas/metabolismo , Pichia/enzimología , Proteínas de Plantas/metabolismo , Vigna/enzimología , Antifúngicos/química , Antifúngicos/farmacología , Quitinasas/química , Quitinasas/farmacología , Hidrólisis , Penicillium/efectos de los fármacos , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Unión Proteica
15.
Food Chem Toxicol ; 83: 1-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26032632

RESUMEN

Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs.


Asunto(s)
Antígenos de Plantas/efectos adversos , Proteínas en la Dieta/efectos adversos , Alimentos Modificados Genéticamente/efectos adversos , Modelos Moleculares , Moringa oleifera/metabolismo , Proteínas de Plantas/efectos adversos , Semillas/metabolismo , Alérgenos/efectos adversos , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Alimentación Animal/efectos adversos , Alimentación Animal/microbiología , Animales , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Brasil , Quitina/metabolismo , Proteínas en la Dieta/química , Proteínas en la Dieta/metabolismo , Digestión , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/prevención & control , Alimentos Modificados Genéticamente/microbiología , Humanos , Ligandos , Hongos Mitospóricos/crecimiento & desarrollo , Moringa oleifera/genética , Control Biológico de Vectores/métodos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos adversos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Isoformas de Proteínas/efectos adversos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Medición de Riesgo , Semillas/genética , Homología de Secuencia de Aminoácido
16.
PLoS One ; 10(3): e0119871, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789746

RESUMEN

Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.


Asunto(s)
Albuminas 2S de Plantas/genética , Proteínas Portadoras/genética , Quitinasas/genética , Moringa oleifera/genética , Proteínas de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Quitina/genética , Quitina/metabolismo , Quitinasas/clasificación , Semillas/química , Semillas/genética
17.
PLoS One ; 9(10): e111427, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25347074

RESUMEN

Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% ß-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.


Asunto(s)
Antifúngicos/química , Quitina/metabolismo , Moringa oleifera/química , Proteínas de Plantas/química , Antifúngicos/farmacología , Colletotrichum/efectos de los fármacos , Fusarium/efectos de los fármacos , Proteínas de Plantas/farmacología , Unión Proteica , Estabilidad Proteica , Semillas/química , Esporas Fúngicas/efectos de los fármacos
18.
PLoS One ; 9(5): e93698, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24817320

RESUMEN

In recent decades, the incidence of candidemia in tertiary hospitals worldwide has substantially increased. These infections are a major cause of morbidity and mortality; in addition, they prolong hospital stays and raise the costs associated with treatment. Studies have reported a significant increase in infections by non-albicans Candida species, especially C. tropicalis. The number of antifungal drugs on the market is small in comparison to the number of antibacterial agents available. The limited number of treatment options, coupled with the increasing frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. The objective of this study was to evaluate and compare the antifungal activities of three semisynthetic naphthofuranquinone molecules against fluconazole-resistant Candida spp. strains. These results allowed to us to evaluate the antifungal effects of three naphthofuranquinones on fluconazole-resistant C. tropicalis. The toxicity of these compounds was manifested as increased intracellular ROS, which resulted in membrane damage and changes in cell size/granularity, mitochondrial membrane depolarization, and DNA damage (including oxidation and strand breakage). In conclusion, the tested naphthofuranquinones (compounds 1-3) exhibited in vitro cytotoxicity against fluconazole-resistant Candida spp. strains.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol/farmacología , Naftoquinonas/farmacología , Animales , Antifúngicos/síntesis química , Antifúngicos/química , Candida/clasificación , Candida/genética , Candida tropicalis/efectos de los fármacos , Candida tropicalis/genética , Candida tropicalis/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Datos de Secuencia Molecular , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Fosfatidilserinas , ARN Ribosómico 5.8S/genética , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ADN
19.
Artículo en Inglés | MEDLINE | ID: mdl-24220155

RESUMEN

It has been demonstrated that variant vicilins are the main resistance factor of cowpea seeds (Vigna unguiculata) against attack by the cowpea beetle Callosobruchus maculatus. There is evidence that the toxic properties of these storage proteins may be related to their interaction with glycoproteins and other microvillar membrane constituents along the digestive tract of the larvae. New findings have shown that following interaction with the microvilli, the vicilins are absorbed across the intestinal epithelium and thus reach the internal environment of the larvae. In the present paper we studied the insecticidal activity of the variant vicilins purified from a resistant cowpea variety (IT81D-1053). Bioassays showed that the seeds of this genotype affected larval growth, causing developmental retardation and 100% mortality. By feeding C. maculatus larvae on susceptible and IT81D-1053 derived vicilins (FITC labelled or unlabelled), followed by fluorescence and immunogold cytolocalization, we were able to demonstrate that both susceptible and variant forms are internalized in the midgut cells and migrate inside vesicular structures from the apex to the basal portion of the enterocytes. However, when larvae were fed with the labelled vicilins for 24h and then returned to a control diet, the concentration of the variant form remained relatively high, suggesting that variant vicilins are not removed from the cells at the same rate as the non-variant vicilins. We suggest that the toxic effects of variant vicilins on midgut cells involve the binding of these proteins to the cell surface followed by internalization and interference with the normal physiology of the enterocytes, thereby affecting larval development in vivo.


Asunto(s)
Escarabajos/metabolismo , Fabaceae/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Animales , Sistema Digestivo/metabolismo , Resistencia a la Enfermedad , Epitelio/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Microvellosidades/metabolismo , Control Biológico de Vectores
20.
Proteomes ; 2(4): 527-549, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-28250394

RESUMEN

The root knot nematodes (RKN), Meloydogine spp., particularly Meloidogyne incognita and Meloidogyne javanica species, parasitize several plant species and are responsible for large annual yield losses all over the world. Only a few available chemical nematicides are still authorized for RKN control owing to environmental and health reasons. Thus, plant resistance is currently considered the method of choice for controlling RKN, and research performed on the molecular interactions between plants and nematodes to identify genes of interest is of paramount importance. The present work aimed to identify the differential accumulation of root proteins of a resistant cowpea genotype (CE-31) inoculated with M. incognita (Race 3) in comparison with mock-inoculated control, using 2D electrophoresis assay, mass spectrometry identification and gene expression analyses by RT-PCR. The results showed that at least 22 proteins were differentially represented in response to RKN challenge of cowpea roots mainly within 4-6 days after inoculation. Amongst the up-represented proteins were SOD, APX, PR-1, ß-1,3-glucanase, chitinases, cysteine protease, secondary metabolism enzymes, key enzymes involved in ethylene biosynthesis, proteins involved in MAPK pathway signaling and, surprisingly, leghemoglobin in non-rhizobium-bacterized cowpea. These findings show that an important rearrangement in the resistant cowpea root proteome occurred following challenge with M. incognita.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...